当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R ggplot2 geom_count 计算重叠点


这是一个变体 geom_point(),它计算每个位置的观测数量,然后将计数映射到点区域。当您有离散数据和过度绘制时,它很有用。

用法

geom_count(
  mapping = NULL,
  data = NULL,
  stat = "sum",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)

stat_sum(
  mapping = NULL,
  data = NULL,
  geom = "point",
  position = "identity",
  ...,
  na.rm = FALSE,
  show.legend = NA,
  inherit.aes = TRUE
)

参数

mapping

aes() 创建的一组美学映射。如果指定且inherit.aes = TRUE(默认),它将与绘图顶层的默认映射组合。如果没有绘图映射,则必须提供mapping

data

该层要显示的数据。有以下三种选择:

如果默认为 NULL ,则数据继承自 ggplot() 调用中指定的绘图数据。

data.frame 或其他对象将覆盖绘图数据。所有对象都将被强化以生成 DataFrame 。请参阅fortify() 将为其创建变量。

将使用单个参数(绘图数据)调用function。返回值必须是 data.frame ,并将用作图层数据。可以从 formula 创建 function (例如 ~ head(.x, 10) )。

position

位置调整,可以是命名调整的字符串(例如 "jitter" 使用 position_jitter ),也可以是调用位置调整函数的结果。如果需要更改调整设置,请使用后者。

...

其他参数传递给 layer() 。这些通常是美学,用于将美学设置为固定值,例如 colour = "red"size = 3 。它们也可能是配对的 geom/stat 的参数。

na.rm

如果 FALSE ,则默认缺失值将被删除并带有警告。如果 TRUE ,缺失值将被静默删除。

show.legend

合乎逻辑的。该层是否应该包含在图例中? NA(默认值)包括是否映射了任何美学。 FALSE 从不包含,而 TRUE 始终包含。它也可以是一个命名的逻辑向量,以精细地选择要显示的美学。

inherit.aes

如果 FALSE ,则覆盖默认美学,而不是与它们组合。这对于定义数据和美观的辅助函数最有用,并且不应继承默认绘图规范的行为,例如borders()

geom, stat

用于覆盖 geom_count()stat_sum() 之间的默认连接。

美学

geom_point() 理解以下美学(所需的美学以粗体显示):

  • x

  • y

  • alpha

  • colour

  • fill

  • group

  • shape

  • size

  • stroke

vignette("ggplot2-specs") 中了解有关设置这些美学的更多信息。

计算变量

这些是由层的 'stat' 部分计算的,可以使用 delayed evaluation 访问。

  • after_stat(n)
    位置观测值的数量。

  • after_stat(prop)
    该面板中该位置的点的百分比。

也可以看看

对于连续的 xy ,请使用 geom_bin2d()

例子

ggplot(mpg, aes(cty, hwy)) +
 geom_point()


ggplot(mpg, aes(cty, hwy)) +
 geom_count()


# Best used in conjunction with scale_size_area which ensures that
# counts of zero would be given size 0. Doesn't make much different
# here because the smallest count is already close to 0.
ggplot(mpg, aes(cty, hwy)) +
 geom_count() +
 scale_size_area()


# Display proportions instead of counts -------------------------------------
# By default, all categorical variables in the plot form the groups.
# Specifying geom_count without a group identifier leads to a plot which is
# not useful:
d <- ggplot(diamonds, aes(x = cut, y = clarity))
d + geom_count(aes(size = after_stat(prop)))

# To correct this problem and achieve a more desirable plot, we need
# to specify which group the proportion is to be calculated over.
d + geom_count(aes(size = after_stat(prop), group = 1)) +
  scale_size_area(max_size = 10)


# Or group by x/y variables to have rows/columns sum to 1.
d + geom_count(aes(size = after_stat(prop), group = cut)) +
  scale_size_area(max_size = 10)

d + geom_count(aes(size = after_stat(prop), group = clarity)) +
  scale_size_area(max_size = 10)

相关用法


注:本文由纯净天空筛选整理自Hadley Wickham等大神的英文原创作品 Count overlapping points。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。