當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom tidy.coxph 整理 a(n) coxph 對象


Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。

用法

# S3 method for coxph
tidy(x, exponentiate = FALSE, conf.int = FALSE, conf.level = 0.95, ...)

參數

x

survival::coxph() 返回的 coxph 對象。

exponentiate

邏輯指示是否對係數估計值取冪。這對於邏輯回歸和多項回歸來說是典型的,但如果沒有 log 或 logit 鏈接,那麽這是一個壞主意。默認為 FALSE

conf.int

邏輯指示是否在整理的輸出中包含置信區間。默認為 FALSE

conf.level

用於置信區間的置信水平(如果 conf.int = TRUE )。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。

...

對於 tidy() ,附加參數傳遞給 summary(x, ...) 。否則忽略。

帶有列的 tibble::tibble()

estimate

回歸項的估計值。

p.value

與觀察到的統計量相關的兩側 p 值。

statistic

在回歸項非零的假設中使用的 T-statistic 的值。

std.error

回歸項的標準誤差。

例子


# load libraries for models and data
library(survival)

# fit model
cfit <- coxph(Surv(time, status) ~ age + sex, lung)

# summarize model fit with tidiers
tidy(cfit)
#> # A tibble: 2 × 5
#>   term  estimate std.error statistic p.value
#>   <chr>    <dbl>     <dbl>     <dbl>   <dbl>
#> 1 age     0.0170   0.00922      1.85 0.0646 
#> 2 sex    -0.513    0.167       -3.06 0.00218
tidy(cfit, exponentiate = TRUE)
#> # A tibble: 2 × 5
#>   term  estimate std.error statistic p.value
#>   <chr>    <dbl>     <dbl>     <dbl>   <dbl>
#> 1 age      1.02    0.00922      1.85 0.0646 
#> 2 sex      0.599   0.167       -3.06 0.00218

lp <- augment(cfit, lung)
risks <- augment(cfit, lung, type.predict = "risk")
expected <- augment(cfit, lung, type.predict = "expected")

glance(cfit)
#> # A tibble: 1 × 18
#>       n nevent statistic.log p.value.log statistic.sc p.value.sc
#>   <int>  <dbl>         <dbl>       <dbl>        <dbl>      <dbl>
#> 1   228    165          14.1    0.000857         13.7    0.00105
#> # ℹ 12 more variables: statistic.wald <dbl>, p.value.wald <dbl>,
#> #   statistic.robust <dbl>, p.value.robust <dbl>, r.squared <dbl>,
#> #   r.squared.max <dbl>, concordance <dbl>, std.error.concordance <dbl>,
#> #   logLik <dbl>, AIC <dbl>, BIC <dbl>, nobs <int>

# also works on clogit models
resp <- levels(logan$occupation)
n <- nrow(logan)
indx <- rep(1:n, length(resp))
logan2 <- data.frame(
  logan[indx, ],
  id = indx,
  tocc = factor(rep(resp, each = n))
)

logan2$case <- (logan2$occupation == logan2$tocc)

cl <- clogit(case ~ tocc + tocc:education + strata(id), logan2)

tidy(cl)
#> # A tibble: 9 × 5
#>   term                       estimate std.error statistic   p.value
#>   <chr>                         <dbl>     <dbl>     <dbl>     <dbl>
#> 1 toccfarm                     -1.90     1.38       -1.37  1.70e- 1
#> 2 toccoperatives                1.17     0.566       2.06  3.91e- 2
#> 3 toccprofessional             -8.10     0.699     -11.6   4.45e-31
#> 4 toccsales                    -5.03     0.770      -6.53  6.54e-11
#> 5 tocccraftsmen:education      -0.332    0.0569     -5.84  5.13e- 9
#> 6 toccfarm:education           -0.370    0.116      -3.18  1.47e- 3
#> 7 toccoperatives:education     -0.422    0.0584     -7.23  4.98e-13
#> 8 toccprofessional:education    0.278    0.0510      5.45  4.94e- 8
#> 9 toccsales:education          NA        0          NA    NA       
glance(cl)
#> # A tibble: 1 × 18
#>       n nevent statistic.log p.value.log statistic.sc p.value.sc
#>   <int>  <dbl>         <dbl>       <dbl>        <dbl>      <dbl>
#> 1  4190    838          666.   1.90e-138         682.  5.01e-142
#> # ℹ 12 more variables: statistic.wald <dbl>, p.value.wald <dbl>,
#> #   statistic.robust <dbl>, p.value.robust <dbl>, r.squared <dbl>,
#> #   r.squared.max <dbl>, concordance <dbl>, std.error.concordance <dbl>,
#> #   logLik <dbl>, AIC <dbl>, BIC <dbl>, nobs <int>

library(ggplot2)

ggplot(lp, aes(age, .fitted, color = sex)) +
  geom_point()


ggplot(risks, aes(age, .fitted, color = sex)) +
  geom_point()


ggplot(expected, aes(time, .fitted, color = sex)) +
  geom_point()

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Tidy a(n) coxph object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。