Glance 接受模型對象並返回 tibble::tibble()
,其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。
Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。
Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA
。
無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA
進行填充。
參數
- x
-
從
survival::coxph()
返回的coxph
對象。 - ...
-
對於
tidy()
,附加參數傳遞給summary(x, ...)
。否則忽略。
也可以看看
其他 coxph 整理器:augment.coxph()
、tidy.coxph()
其他生存整理器:augment.coxph()
, augment.survreg()
, glance.aareg()
, glance.cch()
, glance.pyears()
, glance.survdiff()
, glance.survexp()
, glance.survfit()
, glance.survreg()
, tidy.aareg()
, tidy.cch()
, tidy.coxph()
, tidy.pyears()
, tidy.survdiff()
, tidy.survexp()
, tidy.survfit()
, tidy.survreg()
值
恰好隻有一行和一列的 tibble::tibble()
:
- AIC
-
模型的 Akaike 信息準則。
- BIC
-
模型的貝葉斯信息準則。
- logLik
-
模型的對數似然。 [stats::logLik()] 可能是一個有用的參考。
- n
-
觀察總數。
- nevent
-
事件數量。
- nobs
-
使用的觀察數。
有關其他列說明,請參閱survival::coxph.object。
例子
# load libraries for models and data
library(survival)
# fit model
cfit <- coxph(Surv(time, status) ~ age + sex, lung)
# summarize model fit with tidiers
tidy(cfit)
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 age 0.0170 0.00922 1.85 0.0646
#> 2 sex -0.513 0.167 -3.06 0.00218
tidy(cfit, exponentiate = TRUE)
#> # A tibble: 2 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 age 1.02 0.00922 1.85 0.0646
#> 2 sex 0.599 0.167 -3.06 0.00218
lp <- augment(cfit, lung)
risks <- augment(cfit, lung, type.predict = "risk")
expected <- augment(cfit, lung, type.predict = "expected")
glance(cfit)
#> # A tibble: 1 × 18
#> n nevent statistic.log p.value.log statistic.sc p.value.sc
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 228 165 14.1 0.000857 13.7 0.00105
#> # ℹ 12 more variables: statistic.wald <dbl>, p.value.wald <dbl>,
#> # statistic.robust <dbl>, p.value.robust <dbl>, r.squared <dbl>,
#> # r.squared.max <dbl>, concordance <dbl>, std.error.concordance <dbl>,
#> # logLik <dbl>, AIC <dbl>, BIC <dbl>, nobs <int>
# also works on clogit models
resp <- levels(logan$occupation)
n <- nrow(logan)
indx <- rep(1:n, length(resp))
logan2 <- data.frame(
logan[indx, ],
id = indx,
tocc = factor(rep(resp, each = n))
)
logan2$case <- (logan2$occupation == logan2$tocc)
cl <- clogit(case ~ tocc + tocc:education + strata(id), logan2)
tidy(cl)
#> # A tibble: 9 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 toccfarm -1.90 1.38 -1.37 1.70e- 1
#> 2 toccoperatives 1.17 0.566 2.06 3.91e- 2
#> 3 toccprofessional -8.10 0.699 -11.6 4.45e-31
#> 4 toccsales -5.03 0.770 -6.53 6.54e-11
#> 5 tocccraftsmen:education -0.332 0.0569 -5.84 5.13e- 9
#> 6 toccfarm:education -0.370 0.116 -3.18 1.47e- 3
#> 7 toccoperatives:education -0.422 0.0584 -7.23 4.98e-13
#> 8 toccprofessional:education 0.278 0.0510 5.45 4.94e- 8
#> 9 toccsales:education NA 0 NA NA
glance(cl)
#> # A tibble: 1 × 18
#> n nevent statistic.log p.value.log statistic.sc p.value.sc
#> <int> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 4190 838 666. 1.90e-138 682. 5.01e-142
#> # ℹ 12 more variables: statistic.wald <dbl>, p.value.wald <dbl>,
#> # statistic.robust <dbl>, p.value.robust <dbl>, r.squared <dbl>,
#> # r.squared.max <dbl>, concordance <dbl>, std.error.concordance <dbl>,
#> # logLik <dbl>, AIC <dbl>, BIC <dbl>, nobs <int>
library(ggplot2)
ggplot(lp, aes(age, .fitted, color = sex)) +
geom_point()
ggplot(risks, aes(age, .fitted, color = sex)) +
geom_point()
ggplot(expected, aes(time, .fitted, color = sex)) +
geom_point()
相關用法
- R broom glance.coeftest 瀏覽一個(n)coeftest對象
- R broom glance.clm 瀏覽 a(n) clm 對象
- R broom glance.clmm 掃視一個 (n) clmm 對象
- R broom glance.cv.glmnet 瀏覽 a(n) cv.glmnet 對象
- R broom glance.crr 瀏覽 a(n) crr 對象
- R broom glance.cch 瀏覽 a(n) cch 對象
- R broom glance.rlm 瀏覽 a(n) rlm 對象
- R broom glance.felm 瞥一眼毛氈物體
- R broom glance.geeglm 瀏覽 a(n) geeglm 對象
- R broom glance.plm 瀏覽一個 (n) plm 對象
- R broom glance.biglm 瀏覽 a(n) biglm 對象
- R broom glance.rma 瀏覽一個(n) rma 對象
- R broom glance.multinom 瀏覽一個(n)多項對象
- R broom glance.survexp 瀏覽 a(n) survexp 對象
- R broom glance.survreg 看一眼 survreg 對象
- R broom glance.rq 查看 a(n) rq 對象
- R broom glance.mjoint 查看 a(n) mjoint 對象
- R broom glance.fitdistr 瀏覽 a(n) fitdistr 對象
- R broom glance.glm 瀏覽 a(n) glm 對象
- R broom glance.margins 瀏覽 (n) 個 margins 對象
- R broom glance.poLCA 瀏覽一個(n) poLCA 對象
- R broom glance.aov 瞥一眼 lm 物體
- R broom glance.sarlm 瀏覽一個(n)spatialreg對象
- R broom glance.polr 瀏覽 a(n) polr 對象
- R broom glance.negbin 看一眼 negbin 對象
注:本文由純淨天空篩選整理自等大神的英文原創作品 Glance at a(n) coxph object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。