當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom glance.coxph 瀏覽 a(n) coxph 對象


Glance 接受模型對象並返回 tibble::tibble(),其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。

Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。

Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA

無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA 進行填充。

用法

# S3 method for coxph
glance(x, ...)

參數

x

survival::coxph() 返回的 coxph 對象。

...

對於 tidy() ,附加參數傳遞給 summary(x, ...) 。否則忽略。

恰好隻有一行和一列的 tibble::tibble()

AIC

模型的 Akaike 信息準則。

BIC

模型的貝葉斯信息準則。

logLik

模型的對數似然。 [stats::logLik()] 可能是一個有用的參考。

n

觀察總數。

nevent

事件數量。

nobs

使用的觀察數。

有關其他列說明,請參閱survival::coxph.object。

例子


# load libraries for models and data
library(survival)

# fit model
cfit <- coxph(Surv(time, status) ~ age + sex, lung)

# summarize model fit with tidiers
tidy(cfit)
#> # A tibble: 2 × 5
#>   term  estimate std.error statistic p.value
#>   <chr>    <dbl>     <dbl>     <dbl>   <dbl>
#> 1 age     0.0170   0.00922      1.85 0.0646 
#> 2 sex    -0.513    0.167       -3.06 0.00218
tidy(cfit, exponentiate = TRUE)
#> # A tibble: 2 × 5
#>   term  estimate std.error statistic p.value
#>   <chr>    <dbl>     <dbl>     <dbl>   <dbl>
#> 1 age      1.02    0.00922      1.85 0.0646 
#> 2 sex      0.599   0.167       -3.06 0.00218

lp <- augment(cfit, lung)
risks <- augment(cfit, lung, type.predict = "risk")
expected <- augment(cfit, lung, type.predict = "expected")

glance(cfit)
#> # A tibble: 1 × 18
#>       n nevent statistic.log p.value.log statistic.sc p.value.sc
#>   <int>  <dbl>         <dbl>       <dbl>        <dbl>      <dbl>
#> 1   228    165          14.1    0.000857         13.7    0.00105
#> # ℹ 12 more variables: statistic.wald <dbl>, p.value.wald <dbl>,
#> #   statistic.robust <dbl>, p.value.robust <dbl>, r.squared <dbl>,
#> #   r.squared.max <dbl>, concordance <dbl>, std.error.concordance <dbl>,
#> #   logLik <dbl>, AIC <dbl>, BIC <dbl>, nobs <int>

# also works on clogit models
resp <- levels(logan$occupation)
n <- nrow(logan)
indx <- rep(1:n, length(resp))
logan2 <- data.frame(
  logan[indx, ],
  id = indx,
  tocc = factor(rep(resp, each = n))
)

logan2$case <- (logan2$occupation == logan2$tocc)

cl <- clogit(case ~ tocc + tocc:education + strata(id), logan2)

tidy(cl)
#> # A tibble: 9 × 5
#>   term                       estimate std.error statistic   p.value
#>   <chr>                         <dbl>     <dbl>     <dbl>     <dbl>
#> 1 toccfarm                     -1.90     1.38       -1.37  1.70e- 1
#> 2 toccoperatives                1.17     0.566       2.06  3.91e- 2
#> 3 toccprofessional             -8.10     0.699     -11.6   4.45e-31
#> 4 toccsales                    -5.03     0.770      -6.53  6.54e-11
#> 5 tocccraftsmen:education      -0.332    0.0569     -5.84  5.13e- 9
#> 6 toccfarm:education           -0.370    0.116      -3.18  1.47e- 3
#> 7 toccoperatives:education     -0.422    0.0584     -7.23  4.98e-13
#> 8 toccprofessional:education    0.278    0.0510      5.45  4.94e- 8
#> 9 toccsales:education          NA        0          NA    NA       
glance(cl)
#> # A tibble: 1 × 18
#>       n nevent statistic.log p.value.log statistic.sc p.value.sc
#>   <int>  <dbl>         <dbl>       <dbl>        <dbl>      <dbl>
#> 1  4190    838          666.   1.90e-138         682.  5.01e-142
#> # ℹ 12 more variables: statistic.wald <dbl>, p.value.wald <dbl>,
#> #   statistic.robust <dbl>, p.value.robust <dbl>, r.squared <dbl>,
#> #   r.squared.max <dbl>, concordance <dbl>, std.error.concordance <dbl>,
#> #   logLik <dbl>, AIC <dbl>, BIC <dbl>, nobs <int>

library(ggplot2)

ggplot(lp, aes(age, .fitted, color = sex)) +
  geom_point()


ggplot(risks, aes(age, .fitted, color = sex)) +
  geom_point()


ggplot(expected, aes(time, .fitted, color = sex)) +
  geom_point()

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Glance at a(n) coxph object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。