Augment 接受模型對象和數據集,並添加有關數據集中每個觀察值的信息。最常見的是,這包括 .fitted
列中的預測值、.resid
列中的殘差以及 .se.fit
列中擬合值的標準誤差。新列始終以 .
前綴開頭,以避免覆蓋原始數據集中的列。
用戶可以通過 data
參數或 newdata
參數傳遞數據以進行增強。如果用戶將數據傳遞給 data
參數,則它必須正是用於擬合模型對象的數據。將數據集傳遞給 newdata
以擴充模型擬合期間未使用的數據。這仍然要求至少存在用於擬合模型的所有預測變量列。如果用於擬合模型的原始結果變量未包含在 newdata
中,則輸出中不會包含 .resid
列。
根據是否給出 data
或 newdata
,增強的行為通常會有所不同。這是因為通常存在與訓練觀察(例如影響或相關)測量相關的信息,而這些信息對於新觀察沒有有意義的定義。
為了方便起見,許多增強方法提供默認的 data
參數,以便 augment(fit)
將返回增強的訓練數據。在這些情況下,augment 嘗試根據模型對象重建原始數據,並取得了不同程度的成功。
增強數據集始終以 tibble::tibble 形式返回,其行數與傳遞的數據集相同。這意味著傳遞的數據必須可強製轉換為 tibble。如果預測變量將模型作為協變量矩陣的一部分輸入,例如當模型公式使用 splines::ns()
、 stats::poly()
或 survival::Surv()
時,它會表示為矩陣列。
我們正在定義適合各種 na.action
參數的模型的行為,但目前不保證數據丟失時的行為。
用法
# S3 method for survreg
augment(
x,
data = model.frame(x),
newdata = NULL,
type.predict = "response",
type.residuals = "response",
...
)
參數
- x
-
從
survival::survreg()
返回的survreg
對象。 - data
-
base::data.frame 或
tibble::tibble()
包含用於生成對象x
的原始數據。默認為stats::model.frame(x)
,以便augment(my_fit)
返回增強的原始數據。不要將新數據傳遞給data
參數。增強將報告傳遞給data
參數的數據的影響和烹飪距離等信息。這些度量僅針對原始訓練數據定義。 - newdata
-
base::data.frame()
或tibble::tibble()
包含用於創建x
的所有原始預測變量。默認為NULL
,表示沒有任何內容傳遞給newdata
。如果指定了newdata
,則data
參數將被忽略。 - type.predict
-
指示要使用的預測類型的字符。傳遞給
stats::predict()
泛型的type
參數。允許的參數因模型類而異,因此請務必閱讀predict.my_class
文檔。 - type.residuals
-
指示要使用的殘差類型的字符。傳遞給
stats::residuals()
泛型的type
參數。允許的參數因模型類而異,因此請務必閱讀residuals.my_class
文檔。 - ...
-
附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到
...
中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞conf.lvel = 0.9
,所有計算將使用conf.level = 0.95
進行。這裏有兩個異常:
也可以看看
augment()
, survival::survreg()
其他 survreg 整理器:glance.survreg()
、tidy.survreg()
其他生存整理器:augment.coxph()
, glance.aareg()
, glance.cch()
, glance.coxph()
, glance.pyears()
, glance.survdiff()
, glance.survexp()
, glance.survfit()
, glance.survreg()
, tidy.aareg()
, tidy.cch()
, tidy.coxph()
, tidy.pyears()
, tidy.survdiff()
, tidy.survexp()
, tidy.survfit()
, tidy.survreg()
例子
# load libraries for models and data
library(survival)
# fit model
sr <- survreg(
Surv(futime, fustat) ~ ecog.ps + rx,
ovarian,
dist = "exponential"
)
# summarize model fit with tidiers + visualization
tidy(sr)
#> # A tibble: 3 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 (Intercept) 6.96 1.32 5.27 0.000000139
#> 2 ecog.ps -0.433 0.587 -0.738 0.461
#> 3 rx 0.582 0.587 0.991 0.322
augment(sr, ovarian)
#> # A tibble: 26 × 9
#> futime fustat age resid.ds rx ecog.ps .fitted .se.fit .resid
#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 59 1 72.3 2 1 1 1224. 639. -1165.
#> 2 115 1 74.5 2 1 1 1224. 639. -1109.
#> 3 156 1 66.5 2 1 2 794. 350. -638.
#> 4 421 0 53.4 2 2 1 2190. 1202. -1769.
#> 5 431 1 50.3 2 1 1 1224. 639. -793.
#> 6 448 0 56.4 1 1 2 794. 350. -346.
#> 7 464 1 56.9 2 2 2 1420. 741. -956.
#> 8 475 1 59.9 2 2 2 1420. 741. -945.
#> 9 477 0 64.2 2 1 1 1224. 639. -747.
#> 10 563 1 55.2 1 2 2 1420. 741. -857.
#> # ℹ 16 more rows
glance(sr)
#> # A tibble: 1 × 9
#> iter df statistic logLik AIC BIC df.residual nobs p.value
#> <int> <int> <dbl> <dbl> <dbl> <dbl> <int> <int> <dbl>
#> 1 4 3 1.67 -97.2 200. 204. 23 26 0.434
# coefficient plot
td <- tidy(sr, conf.int = TRUE)
library(ggplot2)
ggplot(td, aes(estimate, term)) +
geom_point() +
geom_errorbarh(aes(xmin = conf.low, xmax = conf.high), height = 0) +
geom_vline(xintercept = 0)
相關用法
- R broom augment.speedlm 使用來自 speedlm 對象的信息增強數據
- R broom augment.smooth.spline 整理一個(n)smooth.spline對象
- R broom augment.sarlm 使用來自(n)個spatialreg對象的信息來增強數據
- R broom augment.betamfx 使用來自 betamfx 對象的信息增強數據
- R broom augment.robustbase.glmrob 使用來自 glmrob 對象的信息增強數據
- R broom augment.rlm 使用來自 rlm 對象的信息增強數據
- R broom augment.htest 使用來自(n)個 htest 對象的信息來增強數據
- R broom augment.clm 使用來自 clm 對象的信息增強數據
- R broom augment.felm 使用來自 (n) 個 felm 對象的信息來增強數據
- R broom augment.drc 使用來自 a(n) drc 對象的信息增強數據
- R broom augment.decomposed.ts 使用來自 decomposed.ts 對象的信息增強數據
- R broom augment.poLCA 使用來自 poLCA 對象的信息增強數據
- R broom augment.lm 使用來自 (n) lm 對象的信息增強數據
- R broom augment.rqs 使用來自 (n) 個 rqs 對象的信息來增強數據
- R broom augment.polr 使用來自 (n) 個 polr 對象的信息增強數據
- R broom augment.plm 使用來自 plm 對象的信息增強數據
- R broom augment.nls 使用來自 nls 對象的信息增強數據
- R broom augment.gam 使用來自 gam 對象的信息增強數據
- R broom augment.fixest 使用來自(n)個最固定對象的信息來增強數據
- R broom augment.rq 使用來自 a(n) rq 對象的信息增強數據
- R broom augment.Mclust 使用來自 Mclust 對象的信息增強數據
- R broom augment.nlrq 整理 a(n) nlrq 對象
- R broom augment.robustbase.lmrob 使用來自 lmrob 對象的信息增強數據
- R broom augment.lmRob 使用來自 lmRob 對象的信息增強數據
- R broom augment.mlogit 使用來自 mlogit 對象的信息增強數據
注:本文由純淨天空篩選整理自等大神的英文原創作品 Augment data with information from a(n) survreg object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。