當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom augment.htest 使用來自(n)個 htest 對象的信息來增強數據


Augment 接受模型對象和數據集,並添加有關數據集中每個觀察值的信息。最常見的是,這包括 .fitted 列中的預測值、.resid 列中的殘差以及 .se.fit 列中擬合值的標準誤差。新列始終以 . 前綴開頭,以避免覆蓋原始數據集中的列。

用戶可以通過 data 參數或 newdata 參數傳遞數據以進行增強。如果用戶將數據傳遞給 data 參數,則它必須正是用於擬合模型對象的數據。將數據集傳遞給 newdata 以擴充模型擬合期間未使用的數據。這仍然要求至少存在用於擬合模型的所有預測變量列。如果用於擬合模型的原始結果變量未包含在 newdata 中,則輸出中不會包含 .resid 列。

根據是否給出 datanewdata,增強的行為通常會有所不同。這是因為通常存在與訓練觀察(例如影響或相關)測量相關的信息,而這些信息對於新觀察沒有有意義的定義。

為了方便起見,許多增強方法提供默認的 data 參數,以便 augment(fit) 將返回增強的訓練數據。在這些情況下,augment 嘗試根據模型對象重建原始數據,並取得了不同程度的成功。

增強數據集始終以 tibble::tibble 形式返回,其行數與傳遞的數據集相同。這意味著傳遞的數據必須可強製轉換為 tibble。如果預測變量將模型作為協變量矩陣的一部分輸入,例如當模型公式使用 splines::ns()stats::poly()survival::Surv() 時,它會表示為矩陣列。

我們正在定義適合各種 na.action 參數的模型的行為,但目前不保證數據丟失時的行為。

用法

# S3 method for htest
augment(x, ...)

參數

x

htest 對象,例如 stats::cor.test()stats::t.test()stats::wilcox.test()stats::chisq.test() 等創建的對象。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

細節

有關如何計算殘差的更多詳細信息,請參閱stats::chisq.test()

也可以看看

恰好隻有一行和一列的 tibble::tibble()

.observed

觀察計數。

.prop

占總數的比例。

.row.prop

行比例(僅限二維表)。

.col.prop

列比例(僅限 2 維表)。

.expected

原假設下的預期計數。

.resid

皮爾遜殘差。

.std.resid

標準化殘差。

例子


tt <- t.test(rnorm(10))

tidy(tt)
#> # A tibble: 1 × 8
#>   estimate statistic p.value parameter conf.low conf.high method          
#>      <dbl>     <dbl>   <dbl>     <dbl>    <dbl>     <dbl> <chr>           
#> 1   -0.177    -0.539   0.603         9   -0.918     0.565 One Sample t-te…
#> # ℹ 1 more variable: alternative <chr>

# the glance output will be the same for each of the below tests
glance(tt)
#> # A tibble: 1 × 8
#>   estimate statistic p.value parameter conf.low conf.high method          
#>      <dbl>     <dbl>   <dbl>     <dbl>    <dbl>     <dbl> <chr>           
#> 1   -0.177    -0.539   0.603         9   -0.918     0.565 One Sample t-te…
#> # ℹ 1 more variable: alternative <chr>

tt <- t.test(mpg ~ am, data = mtcars)

tidy(tt)
#> # A tibble: 1 × 10
#>   estimate estimate1 estimate2 statistic p.value parameter conf.low
#>      <dbl>     <dbl>     <dbl>     <dbl>   <dbl>     <dbl>    <dbl>
#> 1    -7.24      17.1      24.4     -3.77 0.00137      18.3    -11.3
#> # ℹ 3 more variables: conf.high <dbl>, method <chr>, alternative <chr>

wt <- wilcox.test(mpg ~ am, data = mtcars, conf.int = TRUE, exact = FALSE)

tidy(wt)
#> # A tibble: 1 × 7
#>   estimate statistic p.value conf.low conf.high method         alternative
#>      <dbl>     <dbl>   <dbl>    <dbl>     <dbl> <chr>          <chr>      
#> 1    -6.80        42 0.00187    -11.7     -2.90 Wilcoxon rank… two.sided  

ct <- cor.test(mtcars$wt, mtcars$mpg)

tidy(ct)
#> # A tibble: 1 × 8
#>   estimate statistic  p.value parameter conf.low conf.high method         
#>      <dbl>     <dbl>    <dbl>     <int>    <dbl>     <dbl> <chr>          
#> 1   -0.868     -9.56 1.29e-10        30   -0.934    -0.744 Pearson's prod…
#> # ℹ 1 more variable: alternative <chr>

chit <- chisq.test(xtabs(Freq ~ Sex + Class, data = as.data.frame(Titanic)))

tidy(chit)
#> # A tibble: 1 × 4
#>   statistic  p.value parameter method                    
#>       <dbl>    <dbl>     <int> <chr>                     
#> 1      350. 1.56e-75         3 Pearson's Chi-squared test
augment(chit)
#> # A tibble: 8 × 9
#>   Sex    Class .observed  .prop .row.prop .col.prop .expected .resid
#>   <fct>  <fct>     <dbl>  <dbl>     <dbl>     <dbl>     <dbl>  <dbl>
#> 1 Male   1st         180 0.0818    0.104     0.554      256.   -4.73
#> 2 Female 1st         145 0.0659    0.309     0.446       69.4   9.07
#> 3 Male   2nd         179 0.0813    0.103     0.628      224.   -3.02
#> 4 Female 2nd         106 0.0482    0.226     0.372       60.9   5.79
#> 5 Male   3rd         510 0.232     0.295     0.722      555.   -1.92
#> 6 Female 3rd         196 0.0891    0.417     0.278      151.    3.68
#> 7 Male   Crew        862 0.392     0.498     0.974      696.    6.29
#> 8 Female Crew         23 0.0104    0.0489    0.0260     189.  -12.1 
#> # ℹ 1 more variable: .std.resid <dbl>

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Augment data with information from a(n) htest object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。