當前位置: 首頁>>編程示例 >>用法及示例精選 >>正文


R broom augment.drc 使用來自 a(n) drc 對象的信息增強數據

Augment 接受模型對象和數據集,並添加有關數據集中每個觀察值的信息。最常見的是,這包括 .fitted 列中的預測值、.resid 列中的殘差以及 .se.fit 列中擬合值的標準誤差。新列始終以 . 前綴開頭,以避免覆蓋原始數據集中的列。

用戶可以通過 data 參數或 newdata 參數傳遞數據以進行增強。如果用戶將數據傳遞給 data 參數,則它必須正是用於擬合模型對象的數據。將數據集傳遞給 newdata 以擴充模型擬合期間未使用的數據。這仍然要求至少存在用於擬合模型的所有預測變量列。如果用於擬合模型的原始結果變量未包含在 newdata 中,則輸出中不會包含 .resid 列。

根據是否給出 datanewdata,增強的行為通常會有所不同。這是因為通常存在與訓練觀察(例如影響或相關)測量相關的信息,而這些信息對於新觀察沒有有意義的定義。

為了方便起見,許多增強方法提供默認的 data 參數,以便 augment(fit) 將返回增強的訓練數據。在這些情況下,augment 嘗試根據模型對象重建原始數據,並取得了不同程度的成功。

增強數據集始終以 tibble::tibble 形式返回,其行數與傳遞的數據集相同。這意味著傳遞的數據必須可強製轉換為 tibble。如果預測變量將模型作為協變量矩陣的一部分輸入,例如當模型公式使用 splines::ns()stats::poly()survival::Surv() 時,它會表示為矩陣列。

我們正在定義適合各種 na.action 參數的模型的行為,但目前不保證數據丟失時的行為。

用法

# S3 method for drc
augment(
  x,
  data = NULL,
  newdata = NULL,
  se_fit = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  ...
)

參數

x

通過調用 drc::drm() 生成的 drc 對象。

data

base::data.frametibble::tibble() 包含用於生成對象 x 的原始數據。默認為stats::model.frame(x),以便augment(my_fit) 返回增強的原始數據。不要將新數據傳遞給 data 參數。增強將報告傳遞給 data 參數的數據的影響和烹飪距離等信息。這些度量僅針對原始訓練數據定義。

newdata

base::data.frame()tibble::tibble() 包含用於創建 x 的所有原始預測變量。默認為 NULL ,表示沒有任何內容傳遞給 newdata 。如果指定了newdata,則data 參數將被忽略。

se_fit

邏輯指示是否應將 .se.fit 列添加到增強輸出中。對於某些模型,此計算可能有點耗時。默認為 FALSE

conf.int

邏輯指示是否在整理的輸出中包含置信區間。默認為 FALSE

conf.level

用於置信區間的置信水平(如果 conf.int = TRUE )。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

也可以看看

augment() , drc::drm()

其他 drc 整理器:glance.drc()tidy.drc()

帶有列的 tibble::tibble()

.cooksd

廚師距離。

.fitted

擬合值或預測值。

.lower

擬合值的區間下限。

.resid

觀察值和擬合值之間的差異。

.se.fit

擬合值的標準誤差。

.upper

擬合值的區間上限。

例子


# load libraries for models and data
library(drc)
#> 
#> 'drc' has been loaded.
#> Please cite R and 'drc' if used for a publication,
#> for references type 'citation()' and 'citation('drc')'.
#> 
#> Attaching package: ‘drc
#> The following objects are masked from ‘package:stats’:
#> 
#>     gaussian, getInitial

# fit model
mod <- drm(dead / total ~ conc, type,
  weights = total, data = selenium, fct = LL.2(), type = "binomial"
)

# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 8 × 6
#>   term  curve estimate std.error statistic  p.value
#>   <chr> <chr>    <dbl>     <dbl>     <dbl>    <dbl>
#> 1 b     1       -1.50      0.155     -9.67 2.01e-22
#> 2 b     2       -0.843     0.139     -6.06 1.35e- 9
#> 3 b     3       -2.16      0.138    -15.7  1.65e-55
#> 4 b     4       -1.45      0.169     -8.62 3.41e-18
#> 5 e     1      252.       13.8       18.2  1.16e-74
#> 6 e     2      378.       39.4        9.61 3.53e-22
#> 7 e     3      120.        5.91      20.3  1.14e-91
#> 8 e     4       88.8       8.62      10.3  3.28e-25
tidy(mod, conf.int = TRUE)
#> # A tibble: 8 × 8
#>   term  curve estimate std.error statistic  p.value conf.low conf.high
#>   <chr> <chr>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 b     1       -1.50      0.155     -9.67 2.01e-22    -1.81    -1.20 
#> 2 b     2       -0.843     0.139     -6.06 1.35e- 9    -1.12    -0.571
#> 3 b     3       -2.16      0.138    -15.7  1.65e-55    -2.43    -1.89 
#> 4 b     4       -1.45      0.169     -8.62 3.41e-18    -1.78    -1.12 
#> 5 e     1      252.       13.8       18.2  1.16e-74   225.     279.   
#> 6 e     2      378.       39.4        9.61 3.53e-22   301.     456.   
#> 7 e     3      120.        5.91      20.3  1.14e-91   108.     131.   
#> 8 e     4       88.8       8.62      10.3  3.28e-25    71.9    106.   

glance(mod)
#> # A tibble: 1 × 4
#>     AIC   BIC logLik    df.residual
#>   <dbl> <dbl> <logLik>        <int>
#> 1  768.  778. -376.2099          17

augment(mod, selenium)
#> # A tibble: 25 × 7
#>     type  conc total  dead .fitted  .resid    .cooksd
#>    <dbl> <dbl> <dbl> <dbl>   <dbl>   <dbl>      <dbl>
#>  1     1     0   151     3   0      0.0199 0         
#>  2     1   100   146    40   0.199  0.0748 0.0000909 
#>  3     1   200   116    31   0.414 -0.146  0.000104  
#>  4     1   300   159    85   0.565 -0.0302 0.00000516
#>  5     1   400   150   102   0.667  0.0133 0.00000220
#>  6     1   500   140   112   0.737  0.0633 0.0000720 
#>  7     2     0   141     2   0      0.0142 0         
#>  8     2   100   153    30   0.246 -0.0495 0.000168  
#>  9     2   200   142    59   0.369  0.0468 0.0000347 
#> 10     2   300   139    82   0.451  0.139  0.0000430 
#> # ℹ 15 more rows
源代碼:R/drc-tidiers.R

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Augment data with information from a(n) drc object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。