当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.drc 使用来自 a(n) drc 对象的信息增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for drc
augment(
  x,
  data = NULL,
  newdata = NULL,
  se_fit = FALSE,
  conf.int = FALSE,
  conf.level = 0.95,
  ...
)

参数

x

通过调用 drc::drm() 生成的 drc 对象。

data

base::data.frametibble::tibble() 包含用于生成对象 x 的原始数据。默认为stats::model.frame(x),以便augment(my_fit) 返回增强的原始数据。不要将新数据传递给 data 参数。增强将报告传递给 data 参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。

newdata

base::data.frame()tibble::tibble() 包含用于创建 x 的所有原始预测变量。默认为 NULL ,表示没有任何内容传递给 newdata 。如果指定了newdata,则data 参数将被忽略。

se_fit

逻辑指示是否应将 .se.fit 列添加到增强输出中。对于某些模型,此计算可能有点耗时。默认为 FALSE

conf.int

逻辑指示是否在整理的输出中包含置信区间。默认为 FALSE

conf.level

用于置信区间的置信水平(如果 conf.int = TRUE )。必须严格大于 0 且小于 1。默认为 0.95,对应于 95% 的置信区间。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

augment() , drc::drm()

其他 drc 整理器:glance.drc()tidy.drc()

带有列的 tibble::tibble()

.cooksd

厨师距离。

.fitted

拟合值或预测值。

.lower

拟合值的区间下限。

.resid

观察值和拟合值之间的差异。

.se.fit

拟合值的标准误差。

.upper

拟合值的区间上限。

例子


# load libraries for models and data
library(drc)
#> 
#> 'drc' has been loaded.
#> Please cite R and 'drc' if used for a publication,
#> for references type 'citation()' and 'citation('drc')'.
#> 
#> Attaching package: ‘drc’
#> The following objects are masked from ‘package:stats’:
#> 
#>     gaussian, getInitial

# fit model
mod <- drm(dead / total ~ conc, type,
  weights = total, data = selenium, fct = LL.2(), type = "binomial"
)

# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 8 × 6
#>   term  curve estimate std.error statistic  p.value
#>   <chr> <chr>    <dbl>     <dbl>     <dbl>    <dbl>
#> 1 b     1       -1.50      0.155     -9.67 2.01e-22
#> 2 b     2       -0.843     0.139     -6.06 1.35e- 9
#> 3 b     3       -2.16      0.138    -15.7  1.65e-55
#> 4 b     4       -1.45      0.169     -8.62 3.41e-18
#> 5 e     1      252.       13.8       18.2  1.16e-74
#> 6 e     2      378.       39.4        9.61 3.53e-22
#> 7 e     3      120.        5.91      20.3  1.14e-91
#> 8 e     4       88.8       8.62      10.3  3.28e-25
tidy(mod, conf.int = TRUE)
#> # A tibble: 8 × 8
#>   term  curve estimate std.error statistic  p.value conf.low conf.high
#>   <chr> <chr>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 b     1       -1.50      0.155     -9.67 2.01e-22    -1.81    -1.20 
#> 2 b     2       -0.843     0.139     -6.06 1.35e- 9    -1.12    -0.571
#> 3 b     3       -2.16      0.138    -15.7  1.65e-55    -2.43    -1.89 
#> 4 b     4       -1.45      0.169     -8.62 3.41e-18    -1.78    -1.12 
#> 5 e     1      252.       13.8       18.2  1.16e-74   225.     279.   
#> 6 e     2      378.       39.4        9.61 3.53e-22   301.     456.   
#> 7 e     3      120.        5.91      20.3  1.14e-91   108.     131.   
#> 8 e     4       88.8       8.62      10.3  3.28e-25    71.9    106.   

glance(mod)
#> # A tibble: 1 × 4
#>     AIC   BIC logLik    df.residual
#>   <dbl> <dbl> <logLik>        <int>
#> 1  768.  778. -376.2099          17

augment(mod, selenium)
#> # A tibble: 25 × 7
#>     type  conc total  dead .fitted  .resid    .cooksd
#>    <dbl> <dbl> <dbl> <dbl>   <dbl>   <dbl>      <dbl>
#>  1     1     0   151     3   0      0.0199 0         
#>  2     1   100   146    40   0.199  0.0748 0.0000909 
#>  3     1   200   116    31   0.414 -0.146  0.000104  
#>  4     1   300   159    85   0.565 -0.0302 0.00000516
#>  5     1   400   150   102   0.667  0.0133 0.00000220
#>  6     1   500   140   112   0.737  0.0633 0.0000720 
#>  7     2     0   141     2   0      0.0142 0         
#>  8     2   100   153    30   0.246 -0.0495 0.000168  
#>  9     2   200   142    59   0.369  0.0468 0.0000347 
#> 10     2   300   139    82   0.451  0.139  0.0000430 
#> # ℹ 15 more rows
源代码:R/drc-tidiers.R

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) drc object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。