Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted
列中的预测值、.resid
列中的残差以及 .se.fit
列中拟合值的标准误差。新列始终以 .
前缀开头,以避免覆盖原始数据集中的列。
用户可以通过 data
参数或 newdata
参数传递数据以进行增强。如果用户将数据传递给 data
参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata
以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata
中,则输出中不会包含 .resid
列。
根据是否给出 data
或 newdata
,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。
为了方便起见,许多增强方法提供默认的 data
参数,以便 augment(fit)
将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。
增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()
、 stats::poly()
或 survival::Surv()
时,它会表示为矩阵列。
我们正在定义适合各种 na.action
参数的模型的行为,但目前不保证数据丢失时的行为。
用法
# S3 method for betareg
augment(
x,
data = model.frame(x),
newdata = NULL,
type.predict,
type.residuals,
...
)
参数
- x
-
通过调用
betareg::betareg()
生成的betareg
对象。 - data
-
base::data.frame 或
tibble::tibble()
包含用于生成对象x
的原始数据。默认为stats::model.frame(x)
,以便augment(my_fit)
返回增强的原始数据。不要将新数据传递给data
参数。增强将报告传递给data
参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。 - newdata
-
base::data.frame()
或tibble::tibble()
包含用于创建x
的所有原始预测变量。默认为NULL
,表示没有任何内容传递给newdata
。如果指定了newdata
,则data
参数将被忽略。 - type.predict
-
指示要使用的预测类型的字符。传递给
stats::predict()
泛型的type
参数。允许的参数因模型类而异,因此请务必阅读predict.my_class
文档。 - type.residuals
-
指示要使用的残差类型的字符。传递给
stats::residuals()
泛型的type
参数。允许的参数因模型类而异,因此请务必阅读residuals.my_class
文档。 - ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
细节
有关库克距离的更多详细信息,请参阅 stats::cooks.distance()
。
例子
# load libraries for models and data
library(betareg)
# load dats
data("GasolineYield", package = "betareg")
# fit model
mod <- betareg(yield ~ batch + temp, data = GasolineYield)
mod
#>
#> Call:
#> betareg(formula = yield ~ batch + temp, data = GasolineYield)
#>
#> Coefficients (mean model with logit link):
#> (Intercept) batch1 batch2 batch3 batch4
#> -6.15957 1.72773 1.32260 1.57231 1.05971
#> batch5 batch6 batch7 batch8 batch9
#> 1.13375 1.04016 0.54369 0.49590 0.38579
#> temp
#> 0.01097
#>
#> Phi coefficients (precision model with identity link):
#> (phi)
#> 440.3
#>
# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 12 × 6
#> component term estimate std.error statistic p.value
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5
tidy(mod, conf.int = TRUE)
#> # A tibble: 12 × 8
#> component term estimate std.error statistic p.value conf.low
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 -6.52
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.53
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.09
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.34
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 0.859
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 0.931
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 0.832
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 0.330
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 0.282
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 0.153
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 0.0102
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5 225.
#> # ℹ 1 more variable: conf.high <dbl>
tidy(mod, conf.int = TRUE, conf.level = .99)
#> # A tibble: 12 × 8
#> component term estimate std.error statistic p.value conf.low
#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 mean (Intercept) -6.16 0.182 -33.8 3.44e-250 -6.63
#> 2 mean batch1 1.73 0.101 17.1 2.59e- 65 1.47
#> 3 mean batch2 1.32 0.118 11.2 3.34e- 29 1.02
#> 4 mean batch3 1.57 0.116 13.5 8.81e- 42 1.27
#> 5 mean batch4 1.06 0.102 10.4 4.06e- 25 0.796
#> 6 mean batch5 1.13 0.104 11.0 6.52e- 28 0.867
#> 7 mean batch6 1.04 0.106 9.81 1.03e- 22 0.767
#> 8 mean batch7 0.544 0.109 4.98 6.29e- 7 0.263
#> 9 mean batch8 0.496 0.109 4.55 5.30e- 6 0.215
#> 10 mean batch9 0.386 0.119 3.25 1.14e- 3 0.0803
#> 11 mean temp 0.0110 0.000413 26.6 1.26e-155 0.00990
#> 12 precision (phi) 440. 110. 4.00 6.29e- 5 157.
#> # ℹ 1 more variable: conf.high <dbl>
augment(mod)
#> # A tibble: 32 × 6
#> yield batch temp .fitted .resid .cooksd
#> <dbl> <fct> <dbl> <dbl> <dbl> <dbl>
#> 1 0.122 1 205 0.101 1.59 0.0791
#> 2 0.223 1 275 0.195 1.66 0.0917
#> 3 0.347 1 345 0.343 0.211 0.00155
#> 4 0.457 1 407 0.508 -2.88 0.606
#> 5 0.08 2 218 0.0797 0.109 0.0000168
#> 6 0.131 2 273 0.137 -0.365 0.00731
#> 7 0.266 2 347 0.263 0.260 0.00523
#> 8 0.074 3 212 0.0943 -1.77 0.0805
#> 9 0.182 3 272 0.167 1.02 0.0441
#> 10 0.304 3 340 0.298 0.446 0.0170
#> # ℹ 22 more rows
glance(mod)
#> # A tibble: 1 × 7
#> pseudo.r.squared df.null logLik AIC BIC df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.962 30 84.8 -146. -128. 20 32
相关用法
- R broom augment.betamfx 使用来自 betamfx 对象的信息增强数据
- R broom augment.robustbase.glmrob 使用来自 glmrob 对象的信息增强数据
- R broom augment.rlm 使用来自 rlm 对象的信息增强数据
- R broom augment.htest 使用来自(n)个 htest 对象的信息来增强数据
- R broom augment.clm 使用来自 clm 对象的信息增强数据
- R broom augment.speedlm 使用来自 speedlm 对象的信息增强数据
- R broom augment.felm 使用来自 (n) 个 felm 对象的信息来增强数据
- R broom augment.smooth.spline 整理一个(n)smooth.spline对象
- R broom augment.drc 使用来自 a(n) drc 对象的信息增强数据
- R broom augment.decomposed.ts 使用来自 decomposed.ts 对象的信息增强数据
- R broom augment.poLCA 使用来自 poLCA 对象的信息增强数据
- R broom augment.lm 使用来自 (n) lm 对象的信息增强数据
- R broom augment.rqs 使用来自 (n) 个 rqs 对象的信息来增强数据
- R broom augment.polr 使用来自 (n) 个 polr 对象的信息增强数据
- R broom augment.plm 使用来自 plm 对象的信息增强数据
- R broom augment.nls 使用来自 nls 对象的信息增强数据
- R broom augment.gam 使用来自 gam 对象的信息增强数据
- R broom augment.fixest 使用来自(n)个最固定对象的信息来增强数据
- R broom augment.survreg 使用来自 survreg 对象的信息增强数据
- R broom augment.rq 使用来自 a(n) rq 对象的信息增强数据
- R broom augment.Mclust 使用来自 Mclust 对象的信息增强数据
- R broom augment.nlrq 整理 a(n) nlrq 对象
- R broom augment.robustbase.lmrob 使用来自 lmrob 对象的信息增强数据
- R broom augment.lmRob 使用来自 lmRob 对象的信息增强数据
- R broom augment.mlogit 使用来自 mlogit 对象的信息增强数据
注:本文由纯净天空筛选整理自等大神的英文原创作品 Augment data with information from a(n) betareg object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。