当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.betareg 使用来自 betareg 对象的信息增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for betareg
augment(
  x,
  data = model.frame(x),
  newdata = NULL,
  type.predict,
  type.residuals,
  ...
)

参数

x

通过调用 betareg::betareg() 生成的 betareg 对象。

data

base::data.frametibble::tibble() 包含用于生成对象 x 的原始数据。默认为stats::model.frame(x),以便augment(my_fit) 返回增强的原始数据。不要将新数据传递给 data 参数。增强将报告传递给 data 参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。

newdata

base::data.frame()tibble::tibble() 包含用于创建 x 的所有原始预测变量。默认为 NULL ,表示没有任何内容传递给 newdata 。如果指定了newdata,则data 参数将被忽略。

type.predict

指示要使用的预测类型的字符。传递给 stats::predict() 泛型的 type 参数。允许的参数因模型类而异,因此请务必阅读predict.my_class 文档。

type.residuals

指示要使用的残差类型的字符。传递给 stats::residuals() 泛型的 type 参数。允许的参数因模型类而异,因此请务必阅读residuals.my_class 文档。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

细节

有关库克距离的更多详细信息,请参阅 stats::cooks.distance()

也可以看看

带有列的 tibble::tibble()

.cooksd

厨师距离。

.fitted

拟合值或预测值。

.resid

观察值和拟合值之间的差异。

例子


# load libraries for models and data
library(betareg)

# load dats
data("GasolineYield", package = "betareg")

# fit model
mod <- betareg(yield ~ batch + temp, data = GasolineYield)

mod
#> 
#> Call:
#> betareg(formula = yield ~ batch + temp, data = GasolineYield)
#> 
#> Coefficients (mean model with logit link):
#> (Intercept)       batch1       batch2       batch3       batch4  
#>    -6.15957      1.72773      1.32260      1.57231      1.05971  
#>      batch5       batch6       batch7       batch8       batch9  
#>     1.13375      1.04016      0.54369      0.49590      0.38579  
#>        temp  
#>     0.01097  
#> 
#> Phi coefficients (precision model with identity link):
#> (phi)  
#> 440.3  
#> 

# summarize model fit with tidiers
tidy(mod)
#> # A tibble: 12 × 6
#>    component term        estimate  std.error statistic   p.value
#>    <chr>     <chr>          <dbl>      <dbl>     <dbl>     <dbl>
#>  1 mean      (Intercept)  -6.16     0.182       -33.8  3.44e-250
#>  2 mean      batch1        1.73     0.101        17.1  2.59e- 65
#>  3 mean      batch2        1.32     0.118        11.2  3.34e- 29
#>  4 mean      batch3        1.57     0.116        13.5  8.81e- 42
#>  5 mean      batch4        1.06     0.102        10.4  4.06e- 25
#>  6 mean      batch5        1.13     0.104        11.0  6.52e- 28
#>  7 mean      batch6        1.04     0.106         9.81 1.03e- 22
#>  8 mean      batch7        0.544    0.109         4.98 6.29e-  7
#>  9 mean      batch8        0.496    0.109         4.55 5.30e-  6
#> 10 mean      batch9        0.386    0.119         3.25 1.14e-  3
#> 11 mean      temp          0.0110   0.000413     26.6  1.26e-155
#> 12 precision (phi)       440.     110.            4.00 6.29e-  5
tidy(mod, conf.int = TRUE)
#> # A tibble: 12 × 8
#>    component term        estimate  std.error statistic   p.value conf.low
#>    <chr>     <chr>          <dbl>      <dbl>     <dbl>     <dbl>    <dbl>
#>  1 mean      (Intercept)  -6.16     0.182       -33.8  3.44e-250  -6.52  
#>  2 mean      batch1        1.73     0.101        17.1  2.59e- 65   1.53  
#>  3 mean      batch2        1.32     0.118        11.2  3.34e- 29   1.09  
#>  4 mean      batch3        1.57     0.116        13.5  8.81e- 42   1.34  
#>  5 mean      batch4        1.06     0.102        10.4  4.06e- 25   0.859 
#>  6 mean      batch5        1.13     0.104        11.0  6.52e- 28   0.931 
#>  7 mean      batch6        1.04     0.106         9.81 1.03e- 22   0.832 
#>  8 mean      batch7        0.544    0.109         4.98 6.29e-  7   0.330 
#>  9 mean      batch8        0.496    0.109         4.55 5.30e-  6   0.282 
#> 10 mean      batch9        0.386    0.119         3.25 1.14e-  3   0.153 
#> 11 mean      temp          0.0110   0.000413     26.6  1.26e-155   0.0102
#> 12 precision (phi)       440.     110.            4.00 6.29e-  5 225.    
#> # ℹ 1 more variable: conf.high <dbl>
tidy(mod, conf.int = TRUE, conf.level = .99)
#> # A tibble: 12 × 8
#>    component term        estimate  std.error statistic   p.value  conf.low
#>    <chr>     <chr>          <dbl>      <dbl>     <dbl>     <dbl>     <dbl>
#>  1 mean      (Intercept)  -6.16     0.182       -33.8  3.44e-250  -6.63   
#>  2 mean      batch1        1.73     0.101        17.1  2.59e- 65   1.47   
#>  3 mean      batch2        1.32     0.118        11.2  3.34e- 29   1.02   
#>  4 mean      batch3        1.57     0.116        13.5  8.81e- 42   1.27   
#>  5 mean      batch4        1.06     0.102        10.4  4.06e- 25   0.796  
#>  6 mean      batch5        1.13     0.104        11.0  6.52e- 28   0.867  
#>  7 mean      batch6        1.04     0.106         9.81 1.03e- 22   0.767  
#>  8 mean      batch7        0.544    0.109         4.98 6.29e-  7   0.263  
#>  9 mean      batch8        0.496    0.109         4.55 5.30e-  6   0.215  
#> 10 mean      batch9        0.386    0.119         3.25 1.14e-  3   0.0803 
#> 11 mean      temp          0.0110   0.000413     26.6  1.26e-155   0.00990
#> 12 precision (phi)       440.     110.            4.00 6.29e-  5 157.     
#> # ℹ 1 more variable: conf.high <dbl>

augment(mod)
#> # A tibble: 32 × 6
#>    yield batch  temp .fitted .resid   .cooksd
#>    <dbl> <fct> <dbl>   <dbl>  <dbl>     <dbl>
#>  1 0.122 1       205  0.101   1.59  0.0791   
#>  2 0.223 1       275  0.195   1.66  0.0917   
#>  3 0.347 1       345  0.343   0.211 0.00155  
#>  4 0.457 1       407  0.508  -2.88  0.606    
#>  5 0.08  2       218  0.0797  0.109 0.0000168
#>  6 0.131 2       273  0.137  -0.365 0.00731  
#>  7 0.266 2       347  0.263   0.260 0.00523  
#>  8 0.074 3       212  0.0943 -1.77  0.0805   
#>  9 0.182 3       272  0.167   1.02  0.0441   
#> 10 0.304 3       340  0.298   0.446 0.0170   
#> # ℹ 22 more rows

glance(mod)
#> # A tibble: 1 × 7
#>   pseudo.r.squared df.null logLik   AIC   BIC df.residual  nobs
#>              <dbl>   <dbl>  <dbl> <dbl> <dbl>       <int> <int>
#> 1            0.962      30   84.8 -146. -128.          20    32

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) betareg object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。