当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.clm 使用来自 clm 对象的信息增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for clm
augment(
  x,
  data = model.frame(x),
  newdata = NULL,
  type.predict = c("prob", "class"),
  ...
)

参数

x

ordinal::clm() 返回的 clm 对象。

data

base::data.frametibble::tibble() 包含用于生成对象 x 的原始数据。默认为stats::model.frame(x),以便augment(my_fit) 返回增强的原始数据。不要将新数据传递给 data 参数。增强将报告传递给 data 参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。

newdata

base::data.frame()tibble::tibble() 包含用于创建 x 的所有原始预测变量。默认为 NULL ,表示没有任何内容传递给 newdata 。如果指定了newdata,则data 参数将被忽略。

type.predict

要计算哪种类型的预测,"prob""class" 传递给 ordinal::predict.clm() 。默认为 "prob"

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

也可以看看

例子


# load libraries for models and data
library(ordinal)
#> 
#> Attaching package: ‘ordinal’
#> The following object is masked from ‘package:dplyr’:
#> 
#>     slice

# fit model
fit <- clm(rating ~ temp * contact, data = wine)

# summarize model fit with tidiers
tidy(fit)
#> # A tibble: 7 × 6
#>   term                estimate std.error statistic  p.value coef.type
#>   <chr>                  <dbl>     <dbl>     <dbl>    <dbl> <chr>    
#> 1 1|2                   -1.41      0.545    -2.59  9.66e- 3 intercept
#> 2 2|3                    1.14      0.510     2.24  2.48e- 2 intercept
#> 3 3|4                    3.38      0.638     5.29  1.21e- 7 intercept
#> 4 4|5                    4.94      0.751     6.58  4.66e-11 intercept
#> 5 tempwarm               2.32      0.701     3.31  9.28e- 4 location 
#> 6 contactyes             1.35      0.660     2.04  4.13e- 2 location 
#> 7 tempwarm:contactyes    0.360     0.924     0.389 6.97e- 1 location 
tidy(fit, conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 7 × 8
#>   term  estimate std.error statistic  p.value conf.low conf.high coef.type
#>   <chr>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl> <chr>    
#> 1 1|2     -1.41      0.545    -2.59  9.66e- 3   NA         NA    intercept
#> 2 2|3      1.14      0.510     2.24  2.48e- 2   NA         NA    intercept
#> 3 3|4      3.38      0.638     5.29  1.21e- 7   NA         NA    intercept
#> 4 4|5      4.94      0.751     6.58  4.66e-11   NA         NA    intercept
#> 5 temp…    2.32      0.701     3.31  9.28e- 4    1.20       3.52 location 
#> 6 cont…    1.35      0.660     2.04  4.13e- 2    0.284      2.47 location 
#> 7 temp…    0.360     0.924     0.389 6.97e- 1   -1.17       1.89 location 
tidy(fit, conf.int = TRUE, conf.type = "Wald", exponentiate = TRUE)
#> # A tibble: 7 × 8
#>   term  estimate std.error statistic  p.value conf.low conf.high coef.type
#>   <chr>    <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl> <chr>    
#> 1 1|2      0.244     0.545    -2.59  9.66e- 3   0.0837     0.710 intercept
#> 2 2|3      3.14      0.510     2.24  2.48e- 2   1.16       8.52  intercept
#> 3 3|4     29.3       0.638     5.29  1.21e- 7   8.38     102.    intercept
#> 4 4|5    140.        0.751     6.58  4.66e-11  32.1      610.    intercept
#> 5 temp…   10.2       0.701     3.31  9.28e- 4   2.58      40.2   location 
#> 6 cont…    3.85      0.660     2.04  4.13e- 2   1.05      14.0   location 
#> 7 temp…    1.43      0.924     0.389 6.97e- 1   0.234      8.76  location 

glance(fit)
#> # A tibble: 1 × 6
#>     edf   AIC   BIC logLik   df.residual  nobs
#>   <int> <dbl> <dbl> <logLik>       <dbl> <dbl>
#> 1     7  187.  203. -86.4162          65    72
augment(fit, type.predict = "prob")
#> # A tibble: 72 × 4
#>    rating temp  contact .fitted
#>    <ord>  <fct> <fct>     <dbl>
#>  1 2      cold  no       0.562 
#>  2 3      cold  no       0.209 
#>  3 3      cold  yes      0.435 
#>  4 4      cold  yes      0.0894
#>  5 4      warm  no       0.190 
#>  6 4      warm  no       0.190 
#>  7 5      warm  yes      0.286 
#>  8 5      warm  yes      0.286 
#>  9 1      cold  no       0.196 
#> 10 2      cold  no       0.562 
#> # ℹ 62 more rows
augment(fit, type.predict = "class")
#> # A tibble: 72 × 4
#>    rating temp  contact .fitted
#>    <ord>  <fct> <fct>   <fct>  
#>  1 2      cold  no      2      
#>  2 3      cold  no      2      
#>  3 3      cold  yes     3      
#>  4 4      cold  yes     3      
#>  5 4      warm  no      3      
#>  6 4      warm  no      3      
#>  7 5      warm  yes     4      
#>  8 5      warm  yes     4      
#>  9 1      cold  no      2      
#> 10 2      cold  no      2      
#> # ℹ 62 more rows

# ...and again with another model specification
fit2 <- clm(rating ~ temp, nominal = ~contact, data = wine)

tidy(fit2)
#> # A tibble: 9 × 6
#>   term            estimate std.error statistic      p.value coef.type
#>   <chr>              <dbl>     <dbl>     <dbl>        <dbl> <chr>    
#> 1 1|2.(Intercept)    -1.32     0.562     -2.35 0.0186       intercept
#> 2 2|3.(Intercept)     1.25     0.475      2.63 0.00866      intercept
#> 3 3|4.(Intercept)     3.55     0.656      5.41 0.0000000625 intercept
#> 4 4|5.(Intercept)     4.66     0.860      5.42 0.0000000608 intercept
#> 5 1|2.contactyes     -1.62     1.16      -1.39 0.164        intercept
#> 6 2|3.contactyes     -1.51     0.591     -2.56 0.0105       intercept
#> 7 3|4.contactyes     -1.67     0.649     -2.58 0.00985      intercept
#> 8 4|5.contactyes     -1.05     0.897     -1.17 0.241        intercept
#> 9 tempwarm            2.52     0.535      4.71 0.00000250   location 
glance(fit2)
#> # A tibble: 1 × 6
#>     edf   AIC   BIC logLik    df.residual  nobs
#>   <int> <dbl> <dbl> <logLik>        <dbl> <dbl>
#> 1     9  190.  211. -86.20855          63    72

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) clm object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。