当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom tidy.polr 整理 a(n) polr 对象


Tidy 总结了有关模型组件的信息。模型组件可能是回归中的单个项、单个假设、聚类或类。 tidy 所认为的模型组件的确切含义因模型而异,但通常是不言而喻的。如果模型具有多种不同类型的组件,您将需要指定要返回哪些组件。

用法

# S3 method for polr
tidy(
  x,
  conf.int = FALSE,
  conf.level = 0.95,
  exponentiate = FALSE,
  p.values = FALSE,
  ...
)

参数

x

MASS::polr() 返回的 polr 对象。

conf.int

逻辑指示是否在整理的输出中包含置信区间。默认为 FALSE

conf.level

用于置信区间的置信水平(如果 conf.int = TRUE )。必须严格大于 0 且小于 1。默认为 0.95,对应于 95% 的置信区间。

exponentiate

逻辑指示是否对系数估计值取幂。这对于逻辑回归和多项回归来说是典型的,但如果没有 log 或 logit 链接,那么这是一个坏主意。默认为 FALSE

p.values

逻辑性强。是否应根据 MASS::dropterm() 的卡方检验返回 p 值。默认为 FALSE。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

细节

broom 0.7.0 中, coefficient_type 列已重命名为 coef.type ,并且内容也发生了更改。现在内容是 coefficientscale ,而不是 coefficientzeta

使用 dropterm() 函数计算 p.values 是 MASS 包作者建议的方法。这种方法的计算量很大,因此仅在明确请求时才返回p.values。此外,它仅适用于不包含两个以上类别的变量的模型。如果不满足此条件,则会显示一条消息并返回 NA 而不是 p 值。

也可以看看

带有列的 tibble::tibble()

conf.high

估计置信区间的上限。

conf.low

估计置信区间的下限。

estimate

回归项的估计值。

p.value

与观察到的统计量相关的两侧 p 值。

statistic

在回归项非零的假设中使用的 T-statistic 的值。

std.error

回归项的标准误差。

term

回归项的名称。

例子


# load libraries for models and data
library(MASS)

# fit model
fit <- polr(Sat ~ Infl + Type + Cont, weights = Freq, data = housing)

# summarize model fit with tidiers
tidy(fit, exponentiate = TRUE, conf.int = TRUE)
#> 
#> Re-fitting to get Hessian
#> # A tibble: 8 × 7
#>   term          estimate std.error statistic conf.low conf.high coef.type 
#>   <chr>            <dbl>     <dbl>     <dbl>    <dbl>     <dbl> <chr>     
#> 1 InflMedium       1.76     0.105       5.41    1.44      2.16  coefficie…
#> 2 InflHigh         3.63     0.127      10.1     2.83      4.66  coefficie…
#> 3 TypeApartment    0.564    0.119      -4.80    0.446     0.712 coefficie…
#> 4 TypeAtrium       0.693    0.155      -2.36    0.511     0.940 coefficie…
#> 5 TypeTerrace      0.336    0.151      -7.20    0.249     0.451 coefficie…
#> 6 ContHigh         1.43     0.0955      3.77    1.19      1.73  coefficie…
#> 7 Low|Medium       0.609    0.125      -3.97   NA        NA     scale     
#> 8 Medium|High      2.00     0.125       5.50   NA        NA     scale     

glance(fit)
#> # A tibble: 1 × 7
#>     edf logLik   AIC   BIC deviance df.residual  nobs
#>   <int>  <dbl> <dbl> <dbl>    <dbl>       <int> <int>
#> 1     8 -1740. 3495. 3539.    3479.        1673  1681
augment(fit, type.predict = "class")
#> # A tibble: 72 × 6
#>    Sat    Infl   Type      Cont  `(weights)` .fitted
#>    <ord>  <fct>  <fct>     <fct>       <int> <fct>  
#>  1 Low    Low    Tower     Low            21 Low    
#>  2 Medium Low    Tower     Low            21 Low    
#>  3 High   Low    Tower     Low            28 Low    
#>  4 Low    Medium Tower     Low            34 High   
#>  5 Medium Medium Tower     Low            22 High   
#>  6 High   Medium Tower     Low            36 High   
#>  7 Low    High   Tower     Low            10 High   
#>  8 Medium High   Tower     Low            11 High   
#>  9 High   High   Tower     Low            36 High   
#> 10 Low    Low    Apartment Low            61 Low    
#> # ℹ 62 more rows

fit2 <- polr(factor(gear) ~ am + mpg + qsec, data = mtcars)

tidy(fit, p.values = TRUE)
#> 
#> Re-fitting to get Hessian
#> p-values can presently only be returned for models that contain
#>               no categorical variables with more than two levels
#> # A tibble: 8 × 6
#>   term          estimate std.error statistic p.value coef.type  
#>   <chr>            <dbl>     <dbl>     <dbl> <lgl>   <chr>      
#> 1 InflMedium       0.566    0.105       5.41 NA      coefficient
#> 2 InflHigh         1.29     0.127      10.1  NA      coefficient
#> 3 TypeApartment   -0.572    0.119      -4.80 NA      coefficient
#> 4 TypeAtrium      -0.366    0.155      -2.36 NA      coefficient
#> 5 TypeTerrace     -1.09     0.151      -7.20 NA      coefficient
#> 6 ContHigh         0.360    0.0955      3.77 NA      coefficient
#> 7 Low|Medium      -0.496    0.125      -3.97 NA      scale      
#> 8 Medium|High      0.691    0.125       5.50 NA      scale      

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Tidy a(n) polr object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。