Glance 接受模型对象并返回 tibble::tibble()
,其中仅包含一行模型摘要。摘要通常是拟合优度度量、残差假设检验的 p 值或模型收敛信息。
Glance 永远不会返返回自对建模函数的原始调用的信息。这包括建模函数的名称或传递给建模函数的任何参数。
Glance 不计算汇总度量。相反,它将这些计算外包给适当的方法并将结果收集在一起。有时拟合优度测量是不确定的。在这些情况下,该度量将报告为 NA
。
无论模型矩阵是否秩亏,Glance 都会返回相同的列数。如果是这样,则不再具有明确定义值的列中的条目将使用适当类型的 NA
进行填充。
参数
- x
-
从
ordinal::clm()
返回的clm
对象。 - ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
也可以看看
其他序号整理器:augment.clm()
, augment.polr()
, glance.clmm()
, glance.polr()
, glance.svyolr()
, tidy.clmm()
, tidy.clm()
, tidy.polr()
, tidy.svyolr()
值
恰好只有一行和一列的 tibble::tibble()
:
- AIC
-
模型的 Akaike 信息准则。
- BIC
-
模型的贝叶斯信息准则。
- df.residual
-
剩余自由度。
- edf
-
有效自由度。
- logLik
-
模型的对数似然。 [stats::logLik()] 可能是一个有用的参考。
- nobs
-
使用的观察数。
例子
# load libraries for models and data
library(ordinal)
# fit model
fit <- clm(rating ~ temp * contact, data = wine)
# summarize model fit with tidiers
tidy(fit)
#> # A tibble: 7 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -1.41 0.545 -2.59 9.66e- 3 intercept
#> 2 2|3 1.14 0.510 2.24 2.48e- 2 intercept
#> 3 3|4 3.38 0.638 5.29 1.21e- 7 intercept
#> 4 4|5 4.94 0.751 6.58 4.66e-11 intercept
#> 5 tempwarm 2.32 0.701 3.31 9.28e- 4 location
#> 6 contactyes 1.35 0.660 2.04 4.13e- 2 location
#> 7 tempwarm:contactyes 0.360 0.924 0.389 6.97e- 1 location
tidy(fit, conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 7 × 8
#> term estimate std.error statistic p.value conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -1.41 0.545 -2.59 9.66e- 3 NA NA intercept
#> 2 2|3 1.14 0.510 2.24 2.48e- 2 NA NA intercept
#> 3 3|4 3.38 0.638 5.29 1.21e- 7 NA NA intercept
#> 4 4|5 4.94 0.751 6.58 4.66e-11 NA NA intercept
#> 5 temp… 2.32 0.701 3.31 9.28e- 4 1.20 3.52 location
#> 6 cont… 1.35 0.660 2.04 4.13e- 2 0.284 2.47 location
#> 7 temp… 0.360 0.924 0.389 6.97e- 1 -1.17 1.89 location
tidy(fit, conf.int = TRUE, conf.type = "Wald", exponentiate = TRUE)
#> # A tibble: 7 × 8
#> term estimate std.error statistic p.value conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 0.244 0.545 -2.59 9.66e- 3 0.0837 0.710 intercept
#> 2 2|3 3.14 0.510 2.24 2.48e- 2 1.16 8.52 intercept
#> 3 3|4 29.3 0.638 5.29 1.21e- 7 8.38 102. intercept
#> 4 4|5 140. 0.751 6.58 4.66e-11 32.1 610. intercept
#> 5 temp… 10.2 0.701 3.31 9.28e- 4 2.58 40.2 location
#> 6 cont… 3.85 0.660 2.04 4.13e- 2 1.05 14.0 location
#> 7 temp… 1.43 0.924 0.389 6.97e- 1 0.234 8.76 location
glance(fit)
#> # A tibble: 1 × 6
#> edf AIC BIC logLik df.residual nobs
#> <int> <dbl> <dbl> <logLik> <dbl> <dbl>
#> 1 7 187. 203. -86.4162 65 72
augment(fit, type.predict = "prob")
#> # A tibble: 72 × 4
#> rating temp contact .fitted
#> <ord> <fct> <fct> <dbl>
#> 1 2 cold no 0.562
#> 2 3 cold no 0.209
#> 3 3 cold yes 0.435
#> 4 4 cold yes 0.0894
#> 5 4 warm no 0.190
#> 6 4 warm no 0.190
#> 7 5 warm yes 0.286
#> 8 5 warm yes 0.286
#> 9 1 cold no 0.196
#> 10 2 cold no 0.562
#> # ℹ 62 more rows
augment(fit, type.predict = "class")
#> # A tibble: 72 × 4
#> rating temp contact .fitted
#> <ord> <fct> <fct> <fct>
#> 1 2 cold no 2
#> 2 3 cold no 2
#> 3 3 cold yes 3
#> 4 4 cold yes 3
#> 5 4 warm no 3
#> 6 4 warm no 3
#> 7 5 warm yes 4
#> 8 5 warm yes 4
#> 9 1 cold no 2
#> 10 2 cold no 2
#> # ℹ 62 more rows
# ...and again with another model specification
fit2 <- clm(rating ~ temp, nominal = ~contact, data = wine)
tidy(fit2)
#> # A tibble: 9 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2.(Intercept) -1.32 0.562 -2.35 0.0186 intercept
#> 2 2|3.(Intercept) 1.25 0.475 2.63 0.00866 intercept
#> 3 3|4.(Intercept) 3.55 0.656 5.41 0.0000000625 intercept
#> 4 4|5.(Intercept) 4.66 0.860 5.42 0.0000000608 intercept
#> 5 1|2.contactyes -1.62 1.16 -1.39 0.164 intercept
#> 6 2|3.contactyes -1.51 0.591 -2.56 0.0105 intercept
#> 7 3|4.contactyes -1.67 0.649 -2.58 0.00985 intercept
#> 8 4|5.contactyes -1.05 0.897 -1.17 0.241 intercept
#> 9 tempwarm 2.52 0.535 4.71 0.00000250 location
glance(fit2)
#> # A tibble: 1 × 6
#> edf AIC BIC logLik df.residual nobs
#> <int> <dbl> <dbl> <logLik> <dbl> <dbl>
#> 1 9 190. 211. -86.20855 63 72
相关用法
- R broom glance.clmm 扫视一个 (n) clmm 对象
- R broom glance.coxph 浏览 a(n) coxph 对象
- R broom glance.cv.glmnet 浏览 a(n) cv.glmnet 对象
- R broom glance.crr 浏览 a(n) crr 对象
- R broom glance.cch 浏览 a(n) cch 对象
- R broom glance.coeftest 浏览一个(n)coeftest对象
- R broom glance.rlm 浏览 a(n) rlm 对象
- R broom glance.felm 瞥一眼毛毡物体
- R broom glance.geeglm 浏览 a(n) geeglm 对象
- R broom glance.plm 浏览一个 (n) plm 对象
- R broom glance.biglm 浏览 a(n) biglm 对象
- R broom glance.rma 浏览一个(n) rma 对象
- R broom glance.multinom 浏览一个(n)多项对象
- R broom glance.survexp 浏览 a(n) survexp 对象
- R broom glance.survreg 看一眼 survreg 对象
- R broom glance.rq 查看 a(n) rq 对象
- R broom glance.mjoint 查看 a(n) mjoint 对象
- R broom glance.fitdistr 浏览 a(n) fitdistr 对象
- R broom glance.glm 浏览 a(n) glm 对象
- R broom glance.margins 浏览 (n) 个 margins 对象
- R broom glance.poLCA 浏览一个(n) poLCA 对象
- R broom glance.aov 瞥一眼 lm 物体
- R broom glance.sarlm 浏览一个(n)spatialreg对象
- R broom glance.polr 浏览 a(n) polr 对象
- R broom glance.negbin 看一眼 negbin 对象
注:本文由纯净天空筛选整理自等大神的英文原创作品 Glance at a(n) clm object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。