当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom glance.coeftest 浏览一个(n)coeftest对象


Glance 接受模型对象并返回 tibble::tibble(),其中仅包含一行模型摘要。摘要通常是拟合优度度量、残差假设检验的 p 值或模型收敛信息。

Glance 永远不会返返回自对建模函数的原始调用的信息。这包括建模函数的名称或传递给建模函数的任何参数。

Glance 不计算汇总度量。相反,它将这些计算外包给适当的方法并将结果收集在一起。有时拟合优度测量是不确定的。在这些情况下,该度量将报告为 NA

无论模型矩阵是否秩亏,Glance 都会返回相同的列数。如果是这样,则不再具有明确定义值的列中的条目将使用适当类型的 NA 进行填充。

用法

# S3 method for coeftest
glance(x, ...)

参数

x

lmtest::coeftest() 返回的 coeftest 对象。

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

注意

由于 lmtest::coeftest() 保留有关基础模型对象的信息的方式,glance.coeftest() 返回的列将根据参数的不同而有所不同。具体来说,无论如何都会返回四列:"Loglik"、"AIC"、"BIC" 和"nobs"。用户可以通过调用“save = TRUE”参数作为lmtest::coeftest(的一部分来获取其他列(例如"r.squared"、"df")。请参阅示例。

顺便说一句,goodness-of-fit 测量(例如 R-squared)不受异方差存在的影响。进一步讨论请参见,例如伍 Delhi 奇 (2016) 第 8.1 章。

参考

杰弗里·M·伍 Delhi 奇 (2016) Introductory econometrics: A modern approach.(第 6 版)。尼尔森教育。

也可以看看

恰好只有一行和一列的 tibble::tibble()

adj.r.squared

调整后的 R 平方统计量,除了考虑自由度之外,与 R 平方统计量类似。

AIC

模型的 Akaike 信息准则。

BIC

模型的贝叶斯信息准则。

deviance

模型的偏差。

df

模型使用的自由度。

df.residual

剩余自由度。

logLik

模型的对数似然。 [stats::logLik()] 可能是一个有用的参考。

nobs

使用的观察数。

p.value

对应于检验统计量的 P 值。

r.squared

R 平方统计量,或模型解释的变异百分比。也称为决定系数。

sigma

残差的估计标准误差。

statistic

检验统计量。

例子


# load libraries for models and data
library(lmtest)

m <- lm(dist ~ speed, data = cars)

coeftest(m)
#> 
#> t test of coefficients:
#> 
#>              Estimate Std. Error t value Pr(>|t|)    
#> (Intercept) -17.57909    6.75844 -2.6011  0.01232 *  
#> speed         3.93241    0.41551  9.4640 1.49e-12 ***
#> ---
#> Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#> 
tidy(coeftest(m))
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)   -17.6      6.76      -2.60 1.23e- 2
#> 2 speed           3.93     0.416      9.46 1.49e-12
tidy(coeftest(m, conf.int = TRUE))
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)   -17.6      6.76      -2.60 1.23e- 2
#> 2 speed           3.93     0.416      9.46 1.49e-12

# a very common workflow is to combine lmtest::coeftest with alternate
# variance-covariance matrices via the sandwich package. The lmtest
# tidiers support this workflow too, enabling you to adjust the standard
# errors of your tidied models on the fly.
library(sandwich)

# "HC3" (default) robust SEs
tidy(coeftest(m, vcov = vcovHC))
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)   -17.6      5.93      -2.96 4.72e- 3
#> 2 speed           3.93     0.428      9.20 3.64e-12

# "HC2" robust SEs
tidy(coeftest(m, vcov = vcovHC, type = "HC2"))
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic  p.value
#>   <chr>          <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept)   -17.6      5.73      -3.07 3.55e- 3
#> 2 speed           3.93     0.413      9.53 1.21e-12

# N-W HAC robust SEs
tidy(coeftest(m, vcov = NeweyWest))
#> # A tibble: 2 × 5
#>   term        estimate std.error statistic       p.value
#>   <chr>          <dbl>     <dbl>     <dbl>         <dbl>
#> 1 (Intercept)   -17.6      7.02      -2.50 0.0157       
#> 2 speed           3.93     0.551      7.14 0.00000000453

# the columns of the returned tibble for glance.coeftest() will vary
# depending on whether the coeftest object retains the underlying model.
# Users can control this with the "save = TRUE" argument of coeftest().
glance(coeftest(m))
#> Original model not retained as part of coeftest object. For additional model summary information (r.squared, df, etc.), consider passing `glance.coeftest()` an object where the underlying model has been saved, i.e.`lmtest::coeftest(..., save = TRUE)`.
#> This message is displayed once per session.
#> # A tibble: 1 × 4
#>   logLik     AIC   BIC  nobs
#>   <chr>    <dbl> <dbl> <int>
#> 1 -206.578  419.  425.    50
glance(coeftest(m, save = TRUE))
#> # A tibble: 1 × 12
#>   r.squared adj.r.squared sigma statistic  p.value    df logLik   AIC
#>       <dbl>         <dbl> <dbl>     <dbl>    <dbl> <dbl>  <dbl> <dbl>
#> 1     0.651         0.644  15.4      89.6 1.49e-12     1  -207.  419.
#> # ℹ 4 more variables: BIC <dbl>, deviance <dbl>, df.residual <int>,
#> #   nobs <int>
源代码:R/lmtest-tidiers.R

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Glance at a(n) coeftest object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。