Tidy 总结了有关模型组件的信息。模型组件可能是回归中的单个项、单个假设、聚类或类。 tidy 所认为的模型组件的确切含义因模型而异,但通常是不言而喻的。如果模型具有多种不同类型的组件,您将需要指定要返回哪些组件。
参数
- x
-
plm::plm()
返回的plm
对象。 - conf.int
-
逻辑指示是否在整理的输出中包含置信区间。默认为
FALSE
。 - conf.level
-
用于置信区间的置信水平(如果
conf.int = TRUE
)。必须严格大于 0 且小于 1。默认为 0.95,对应于 95% 的置信区间。 - ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
也可以看看
tidy()
, plm::plm()
, tidy.lm()
其他 plm 整理器:augment.plm()
、glance.plm()
值
带有列的 tibble::tibble()
:
- conf.high
-
估计置信区间的上限。
- conf.low
-
估计置信区间的下限。
- estimate
-
回归项的估计值。
- p.value
-
与观察到的统计量相关的两侧 p 值。
- statistic
-
在回归项非零的假设中使用的 T-statistic 的值。
- std.error
-
回归项的标准误差。
- term
-
回归项的名称。
例子
# load libraries for models and data
library(plm)
# load data
data("Produc", package = "plm")
# fit model
zz <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
data = Produc, index = c("state", "year")
)
# summarize model fit with tidiers
summary(zz)
#> Oneway (individual) effect Within Model
#>
#> Call:
#> plm(formula = log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
#> data = Produc, index = c("state", "year"))
#>
#> Balanced Panel: n = 48, T = 17, N = 816
#>
#> Residuals:
#> Min. 1st Qu. Median 3rd Qu. Max.
#> -0.120456 -0.023741 -0.002041 0.018144 0.174718
#>
#> Coefficients:
#> Estimate Std. Error t-value Pr(>|t|)
#> log(pcap) -0.02614965 0.02900158 -0.9017 0.3675
#> log(pc) 0.29200693 0.02511967 11.6246 < 2.2e-16 ***
#> log(emp) 0.76815947 0.03009174 25.5273 < 2.2e-16 ***
#> unemp -0.00529774 0.00098873 -5.3582 1.114e-07 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Total Sum of Squares: 18.941
#> Residual Sum of Squares: 1.1112
#> R-Squared: 0.94134
#> Adj. R-Squared: 0.93742
#> F-statistic: 3064.81 on 4 and 764 DF, p-value: < 2.22e-16
tidy(zz)
#> # A tibble: 4 × 5
#> term estimate std.error statistic p.value
#> <chr> <dbl> <dbl> <dbl> <dbl>
#> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1
#> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29
#> 3 log(emp) 0.768 0.0301 25.5 2.02e-104
#> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7
tidy(zz, conf.int = TRUE)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 -0.0830 0.0307
#> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 0.243 0.341
#> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 0.709 0.827
#> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7 -0.00724 -0.00336
tidy(zz, conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 4 × 7
#> term estimate std.error statistic p.value conf.low conf.high
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 log(pcap) -0.0261 0.0290 -0.902 3.68e- 1 -0.0739 0.0216
#> 2 log(pc) 0.292 0.0251 11.6 7.08e- 29 0.251 0.333
#> 3 log(emp) 0.768 0.0301 25.5 2.02e-104 0.719 0.818
#> 4 unemp -0.00530 0.000989 -5.36 1.11e- 7 -0.00692 -0.00367
augment(zz)
#> # A tibble: 816 × 7
#> `log(gsp)` `log(pcap)` `log(pc)` `log(emp)` unemp .fitted .resid
#> <pseries> <pseries> <pseries> <pseries> <pser> <dbl> <pseries>
#> 1 10.25478 9.617981 10.48553 6.918201 4.7 10.3 -0.046561413
#> 2 10.28790 9.648720 10.52675 6.929419 5.2 10.3 -0.030640422
#> 3 10.35147 9.678618 10.56283 6.977561 4.7 10.4 -0.016454312
#> 4 10.41721 9.705418 10.59873 7.034828 3.9 10.4 -0.008726974
#> 5 10.42671 9.726910 10.64679 7.064588 5.5 10.5 -0.027084312
#> 6 10.42240 9.759401 10.69130 7.052202 7.7 10.4 -0.022368930
#> 7 10.48470 9.783175 10.82420 7.095893 6.8 10.5 -0.036587629
#> 8 10.53111 9.804326 10.84125 7.146142 7.4 10.6 -0.030020604
#> 9 10.59573 9.824430 10.87055 7.197810 6.3 10.6 -0.018942497
#> 10 10.62082 9.845937 10.90643 7.216709 7.1 10.6 -0.014057170
#> # ℹ 806 more rows
glance(zz)
#> # A tibble: 1 × 7
#> r.squared adj.r.squared statistic p.value deviance df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.941 0.937 3065. 0 1.11 764 816
相关用法
- R broom tidy.poLCA 整理 a(n) poLCA 对象
- R broom tidy.pairwise.htest 整理 a(n)pairwise.htest 对象
- R broom tidy.polr 整理 a(n) polr 对象
- R broom tidy.pyears 整理 a(n) pyears 对象
- R broom tidy.prcomp 整理 a(n) prcomp 对象
- R broom tidy.power.htest 整理 a(n) power.htest 对象
- R broom tidy.pam 整理 a(n) pam 对象
- R broom tidy.robustbase.glmrob 整理 a(n) glmrob 对象
- R broom tidy.acf 整理 a(n) acf 对象
- R broom tidy.robustbase.lmrob 整理 a(n) lmrob 对象
- R broom tidy.biglm 整理 a(n) biglm 对象
- R broom tidy.garch 整理 a(n) garch 对象
- R broom tidy.rq 整理 a(n) rq 对象
- R broom tidy.kmeans 整理 a(n) kmeans 对象
- R broom tidy.betamfx 整理 a(n) betamfx 对象
- R broom tidy.anova 整理 a(n) anova 对象
- R broom tidy.btergm 整理 a(n) btergm 对象
- R broom tidy.cv.glmnet 整理 a(n) cv.glmnet 对象
- R broom tidy.roc 整理 a(n) roc 对象
- R broom tidy.emmGrid 整理 a(n) emmGrid 对象
- R broom tidy.Kendall 整理 a(n) Kendall 对象
- R broom tidy.survreg 整理 a(n) survreg 对象
- R broom tidy.ergm 整理 a(n) ergm 对象
- R broom tidy.coeftest 整理 a(n) coeftest 对象
- R broom tidy.map 整理 a(n) Map对象
注:本文由纯净天空筛选整理自等大神的英文原创作品 Tidy a(n) plm object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。