Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted
列中的预测值、.resid
列中的残差以及 .se.fit
列中拟合值的标准误差。新列始终以 .
前缀开头,以避免覆盖原始数据集中的列。
用户可以通过 data
参数或 newdata
参数传递数据以进行增强。如果用户将数据传递给 data
参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata
以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata
中,则输出中不会包含 .resid
列。
根据是否给出 data
或 newdata
,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。
为了方便起见,许多增强方法提供默认的 data
参数,以便 augment(fit)
将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。
增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()
、 stats::poly()
或 survival::Surv()
时,它会表示为矩阵列。
我们正在定义适合各种 na.action
参数的模型的行为,但目前不保证数据丢失时的行为。
用法
# S3 method for betamfx
augment(
x,
data = model.frame(x$fit),
newdata = NULL,
type.predict = c("response", "link", "precision", "variance", "quantile"),
type.residuals = c("sweighted2", "deviance", "pearson", "response", "weighted",
"sweighted"),
...
)
参数
- x
-
一个
betamfx
对象。 - data
-
base::data.frame 或
tibble::tibble()
包含用于生成对象x
的原始数据。默认为stats::model.frame(x)
,以便augment(my_fit)
返回增强的原始数据。不要将新数据传递给data
参数。增强将报告传递给data
参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。 - newdata
-
base::data.frame()
或tibble::tibble()
包含用于创建x
的所有原始预测变量。默认为NULL
,表示没有任何内容传递给newdata
。如果指定了newdata
,则data
参数将被忽略。 - type.predict
-
指示要使用的预测类型的字符。传递给
betareg::predict.betareg()
的type
参数。默认为"response"
。 - type.residuals
-
指示要使用的残差类型的字符。传递给
betareg::residuals.betareg()
的type
参数。默认为"sweighted2
。 - ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
细节
此增强方法包装 mfx::betamfx()
对象的 augment.betareg()
。
也可以看看
augment.betareg()
, mfx::betamfx()
其他 mfx 整理器:augment.mfx()
、glance.betamfx()
、glance.mfx()
、tidy.betamfx()
、tidy.mfx()
例子
library(mfx)
#> Loading required package: sandwich
#> Loading required package: lmtest
#> Loading required package: zoo
#>
#> Attaching package: ‘zoo’
#> The following objects are masked from ‘package:base’:
#>
#> as.Date, as.Date.numeric
#> Loading required package: MASS
#>
#> Attaching package: ‘MASS’
#> The following object is masked from ‘package:dplyr’:
#>
#> select
#> Loading required package: betareg
# Simulate some data
set.seed(12345)
n <- 1000
x <- rnorm(n)
# Beta outcome
y <- rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2 * x)))
# Use Smithson and Verkuilen correction
y <- (y * (n - 1) + 0.5) / n
d <- data.frame(y, x)
mod_betamfx <- betamfx(y ~ x | x, data = d)
tidy(mod_betamfx, conf.int = TRUE)
#> # A tibble: 1 × 8
#> term atmean estimate std.error statistic p.value conf.low conf.high
#> <chr> <lgl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 x TRUE 0.0226 0.00801 2.82 0.00483 0.00686 0.0383
# Compare with the naive model coefficients of the equivalent betareg call (not run)
# tidy(betamfx(y ~ x | x, data = d), conf.int = TRUE)
augment(mod_betamfx)
#> # A tibble: 1,000 × 5
#> y x .fitted .resid .cooksd
#> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 0.951 0.586 0.809 -0.230 0.000189
#> 2 0.714 0.709 0.811 -0.663 0.0000993
#> 3 0.999 -0.109 0.793 0.747 0.000273
#> 4 0.998 -0.453 0.785 0.530 0.000334
#> 5 0.999 0.606 0.809 0.724 0.000342
#> 6 0.562 -1.82 0.751 -0.648 0.000878
#> 7 0.999 0.630 0.810 0.679 0.000348
#> 8 0.999 -0.276 0.789 0.685 0.000294
#> 9 0.744 -0.284 0.789 -0.577 0.0000134
#> 10 0.999 -0.919 0.774 0.709 0.000551
#> # ℹ 990 more rows
glance(mod_betamfx)
#> # A tibble: 1 × 7
#> pseudo.r.squared df.null logLik AIC BIC df.residual nobs
#> <dbl> <dbl> <dbl> <dbl> <dbl> <int> <int>
#> 1 0.00726 998 1897. -3787. -3767. 996 1000
相关用法
- R broom augment.betareg 使用来自 betareg 对象的信息增强数据
- R broom augment.robustbase.glmrob 使用来自 glmrob 对象的信息增强数据
- R broom augment.rlm 使用来自 rlm 对象的信息增强数据
- R broom augment.htest 使用来自(n)个 htest 对象的信息来增强数据
- R broom augment.clm 使用来自 clm 对象的信息增强数据
- R broom augment.speedlm 使用来自 speedlm 对象的信息增强数据
- R broom augment.felm 使用来自 (n) 个 felm 对象的信息来增强数据
- R broom augment.smooth.spline 整理一个(n)smooth.spline对象
- R broom augment.drc 使用来自 a(n) drc 对象的信息增强数据
- R broom augment.decomposed.ts 使用来自 decomposed.ts 对象的信息增强数据
- R broom augment.poLCA 使用来自 poLCA 对象的信息增强数据
- R broom augment.lm 使用来自 (n) lm 对象的信息增强数据
- R broom augment.rqs 使用来自 (n) 个 rqs 对象的信息来增强数据
- R broom augment.polr 使用来自 (n) 个 polr 对象的信息增强数据
- R broom augment.plm 使用来自 plm 对象的信息增强数据
- R broom augment.nls 使用来自 nls 对象的信息增强数据
- R broom augment.gam 使用来自 gam 对象的信息增强数据
- R broom augment.fixest 使用来自(n)个最固定对象的信息来增强数据
- R broom augment.survreg 使用来自 survreg 对象的信息增强数据
- R broom augment.rq 使用来自 a(n) rq 对象的信息增强数据
- R broom augment.Mclust 使用来自 Mclust 对象的信息增强数据
- R broom augment.nlrq 整理 a(n) nlrq 对象
- R broom augment.robustbase.lmrob 使用来自 lmrob 对象的信息增强数据
- R broom augment.lmRob 使用来自 lmRob 对象的信息增强数据
- R broom augment.mlogit 使用来自 mlogit 对象的信息增强数据
注:本文由纯净天空筛选整理自等大神的英文原创作品 Augment data with information from a(n) betamfx object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。