当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.betamfx 使用来自 betamfx 对象的信息增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for betamfx
augment(
  x,
  data = model.frame(x$fit),
  newdata = NULL,
  type.predict = c("response", "link", "precision", "variance", "quantile"),
  type.residuals = c("sweighted2", "deviance", "pearson", "response", "weighted",
    "sweighted"),
  ...
)

参数

x

一个 betamfx 对象。

data

base::data.frametibble::tibble() 包含用于生成对象 x 的原始数据。默认为stats::model.frame(x),以便augment(my_fit) 返回增强的原始数据。不要将新数据传递给 data 参数。增强将报告传递给 data 参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。

newdata

base::data.frame()tibble::tibble() 包含用于创建 x 的所有原始预测变量。默认为 NULL ,表示没有任何内容传递给 newdata 。如果指定了newdata,则data 参数将被忽略。

type.predict

指示要使用的预测类型的字符。传递给 betareg::predict.betareg()type 参数。默认为 "response"

type.residuals

指示要使用的残差类型的字符。传递给 betareg::residuals.betareg()type 参数。默认为 "sweighted2

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

细节

此增强方法包装 mfx::betamfx() 对象的 augment.betareg()

也可以看看

带有列的 tibble::tibble()

.cooksd

厨师距离。

.fitted

拟合值或预测值。

.resid

观察值和拟合值之间的差异。

例子


library(mfx)
#> Loading required package: sandwich
#> Loading required package: lmtest
#> Loading required package: zoo
#> 
#> Attaching package: ‘zoo’
#> The following objects are masked from ‘package:base’:
#> 
#>     as.Date, as.Date.numeric
#> Loading required package: MASS
#> 
#> Attaching package: ‘MASS’
#> The following object is masked from ‘package:dplyr’:
#> 
#>     select
#> Loading required package: betareg

# Simulate some data
set.seed(12345)
n <- 1000
x <- rnorm(n)

# Beta outcome
y <- rbeta(n, shape1 = plogis(1 + 0.5 * x), shape2 = (abs(0.2 * x)))
# Use Smithson and Verkuilen correction
y <- (y * (n - 1) + 0.5) / n

d <- data.frame(y, x)
mod_betamfx <- betamfx(y ~ x | x, data = d)

tidy(mod_betamfx, conf.int = TRUE)
#> # A tibble: 1 × 8
#>   term  atmean estimate std.error statistic p.value conf.low conf.high
#>   <chr> <lgl>     <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 x     TRUE     0.0226   0.00801      2.82 0.00483  0.00686    0.0383

# Compare with the naive model coefficients of the equivalent betareg call (not run)
# tidy(betamfx(y ~ x | x, data = d), conf.int = TRUE)

augment(mod_betamfx)
#> # A tibble: 1,000 × 5
#>        y      x .fitted .resid   .cooksd
#>    <dbl>  <dbl>   <dbl>  <dbl>     <dbl>
#>  1 0.951  0.586   0.809 -0.230 0.000189 
#>  2 0.714  0.709   0.811 -0.663 0.0000993
#>  3 0.999 -0.109   0.793  0.747 0.000273 
#>  4 0.998 -0.453   0.785  0.530 0.000334 
#>  5 0.999  0.606   0.809  0.724 0.000342 
#>  6 0.562 -1.82    0.751 -0.648 0.000878 
#>  7 0.999  0.630   0.810  0.679 0.000348 
#>  8 0.999 -0.276   0.789  0.685 0.000294 
#>  9 0.744 -0.284   0.789 -0.577 0.0000134
#> 10 0.999 -0.919   0.774  0.709 0.000551 
#> # ℹ 990 more rows
glance(mod_betamfx)
#> # A tibble: 1 × 7
#>   pseudo.r.squared df.null logLik    AIC    BIC df.residual  nobs
#>              <dbl>   <dbl>  <dbl>  <dbl>  <dbl>       <int> <int>
#> 1          0.00726     998  1897. -3787. -3767.         996  1000
源代码:R/mfx-tidiers.R

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) betamfx object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。