Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted
列中的预测值、.resid
列中的残差以及 .se.fit
列中拟合值的标准误差。新列始终以 .
前缀开头,以避免覆盖原始数据集中的列。
用户可以通过 data
参数或 newdata
参数传递数据以进行增强。如果用户将数据传递给 data
参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata
以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata
中,则输出中不会包含 .resid
列。
根据是否给出 data
或 newdata
,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。
为了方便起见,许多增强方法提供默认的 data
参数,以便 augment(fit)
将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。
增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()
、 stats::poly()
或 survival::Surv()
时,它会表示为矩阵列。
我们正在定义适合各种 na.action
参数的模型的行为,但目前不保证数据丢失时的行为。
参数
- x
-
从
mclust::Mclust()
返回Mclust
对象。 - data
-
base::data.frame 或
tibble::tibble()
包含用于生成对象x
的原始数据。默认为stats::model.frame(x)
,以便augment(my_fit)
返回增强的原始数据。不要将新数据传递给data
参数。增强将报告传递给data
参数的数据的影响和烹饪距离等信息。这些度量仅针对原始训练数据定义。 - ...
-
附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到
...
中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递conf.lvel = 0.9
,所有计算将使用conf.level = 0.95
进行。这里有两个异常:
也可以看看
其他 mclust 整理器:tidy.Mclust()
例子
# load library for models and data
library(mclust)
#> Package 'mclust' version 6.0.0
#> Type 'citation("mclust")' for citing this R package in publications.
# load data manipulation libraries
library(dplyr)
#>
#> Attaching package: ‘dplyr’
#> The following objects are masked from ‘package:stats’:
#>
#> filter, lag
#> The following objects are masked from ‘package:base’:
#>
#> intersect, setdiff, setequal, union
library(tibble)
library(purrr)
#>
#> Attaching package: ‘purrr’
#> The following object is masked from ‘package:mclust’:
#>
#> map
library(tidyr)
set.seed(27)
centers <- tibble(
cluster = factor(1:3),
# number points in each cluster
num_points = c(100, 150, 50),
# x1 coordinate of cluster center
x1 = c(5, 0, -3),
# x2 coordinate of cluster center
x2 = c(-1, 1, -2)
)
points <- centers %>%
mutate(
x1 = map2(num_points, x1, rnorm),
x2 = map2(num_points, x2, rnorm)
) %>%
select(-num_points, -cluster) %>%
unnest(c(x1, x2))
# fit model
m <- Mclust(points)
# summarize model fit with tidiers
tidy(m)
#> # A tibble: 3 × 6
#> component size proportion variance mean.x1 mean.x2
#> <int> <int> <dbl> <dbl> <dbl> <dbl>
#> 1 1 101 0.335 1.12 5.01 -1.04
#> 2 2 150 0.503 1.12 0.0594 1.00
#> 3 3 49 0.161 1.12 -3.20 -2.06
augment(m, points)
#> # A tibble: 300 × 4
#> x1 x2 .class .uncertainty
#> <dbl> <dbl> <fct> <dbl>
#> 1 6.91 -2.74 1 3.98e-11
#> 2 6.14 -2.45 1 1.99e- 9
#> 3 4.24 -0.946 1 1.47e- 4
#> 4 3.54 0.287 1 2.94e- 2
#> 5 3.91 0.408 1 7.48e- 3
#> 6 5.30 -1.58 1 4.22e- 7
#> 7 5.01 -1.77 1 1.06e- 6
#> 8 6.16 -1.68 1 7.64e- 9
#> 9 7.13 -2.17 1 4.16e-11
#> 10 5.24 -2.42 1 1.16e- 7
#> # ℹ 290 more rows
glance(m)
#> # A tibble: 1 × 7
#> model G BIC logLik df hypvol nobs
#> <chr> <int> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 EII 3 -2402. -1175. 9 NA 300
相关用法
- R broom augment.betamfx 使用来自 betamfx 对象的信息增强数据
- R broom augment.robustbase.glmrob 使用来自 glmrob 对象的信息增强数据
- R broom augment.rlm 使用来自 rlm 对象的信息增强数据
- R broom augment.htest 使用来自(n)个 htest 对象的信息来增强数据
- R broom augment.clm 使用来自 clm 对象的信息增强数据
- R broom augment.speedlm 使用来自 speedlm 对象的信息增强数据
- R broom augment.felm 使用来自 (n) 个 felm 对象的信息来增强数据
- R broom augment.smooth.spline 整理一个(n)smooth.spline对象
- R broom augment.drc 使用来自 a(n) drc 对象的信息增强数据
- R broom augment.decomposed.ts 使用来自 decomposed.ts 对象的信息增强数据
- R broom augment.poLCA 使用来自 poLCA 对象的信息增强数据
- R broom augment.lm 使用来自 (n) lm 对象的信息增强数据
- R broom augment.rqs 使用来自 (n) 个 rqs 对象的信息来增强数据
- R broom augment.polr 使用来自 (n) 个 polr 对象的信息增强数据
- R broom augment.plm 使用来自 plm 对象的信息增强数据
- R broom augment.nls 使用来自 nls 对象的信息增强数据
- R broom augment.gam 使用来自 gam 对象的信息增强数据
- R broom augment.fixest 使用来自(n)个最固定对象的信息来增强数据
- R broom augment.survreg 使用来自 survreg 对象的信息增强数据
- R broom augment.rq 使用来自 a(n) rq 对象的信息增强数据
- R broom augment.nlrq 整理 a(n) nlrq 对象
- R broom augment.robustbase.lmrob 使用来自 lmrob 对象的信息增强数据
- R broom augment.lmRob 使用来自 lmRob 对象的信息增强数据
- R broom augment.mlogit 使用来自 mlogit 对象的信息增强数据
- R broom augment.betareg 使用来自 betareg 对象的信息增强数据
注:本文由纯净天空筛选整理自等大神的英文原创作品 Augment data with information from a(n) Mclust object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。