当前位置: 首页>>代码示例 >>用法及示例精选 >>正文


R broom augment.mlogit 使用来自 mlogit 对象的信息增强数据


Augment 接受模型对象和数据集,并添加有关数据集中每个观察值的信息。最常见的是,这包括 .fitted 列中的预测值、.resid 列中的残差以及 .se.fit 列中拟合值的标准误差。新列始终以 . 前缀开头,以避免覆盖原始数据集中的列。

用户可以通过 data 参数或 newdata 参数传递数据以进行增强。如果用户将数据传递给 data 参数,则它必须正是用于拟合模型对象的数据。将数据集传递给 newdata 以扩充模型拟合期间未使用的数据。这仍然要求至少存在用于拟合模型的所有预测变量列。如果用于拟合模型的原始结果变量未包含在 newdata 中,则输出中不会包含 .resid 列。

根据是否给出 datanewdata,增强的行为通常会有所不同。这是因为通常存在与训练观察(例如影响或相关)测量相关的信息,而这些信息对于新观察没有有意义的定义。

为了方便起见,许多增强方法提供默认的 data 参数,以便 augment(fit) 将返回增强的训练数据。在这些情况下,augment 尝试根据模型对象重建原始数据,并取得了不同程度的成功。

增强数据集始终以 tibble::tibble 形式返回,其行数与传递的数据集相同。这意味着传递的数据必须可强制转换为 tibble。如果预测变量将模型作为协变量矩阵的一部分输入,例如当模型公式使用 splines::ns()stats::poly()survival::Surv() 时,它会表示为矩阵列。

我们正在定义适合各种 na.action 参数的模型的行为,但目前不保证数据丢失时的行为。

用法

# S3 method for mlogit
augment(x, data = x$model, ...)

参数

x

mlogit::mlogit() 返回的对象。

data

目前未使用

...

附加参数。不曾用过。仅需要匹配通用签名。注意:拼写错误的参数将被吸收到 ... 中,并被忽略。如果拼写错误的参数有默认值,则将使用默认值。例如,如果您传递 conf.lvel = 0.9 ,所有计算将使用 conf.level = 0.95 进行。这里有两个异常:

  • tidy() 方法在提供 exponentiate 参数时会发出警告(如果该参数将被忽略)。

  • augment() 方法在提供 newdata 参数时会发出警告(如果该参数将被忽略)。

细节

目前这仅适用于估计数据集。需要将其设置为对另一个数据集进行预测。

也可以看看

augment()

其他 mlogit 整理器:glance.mlogit()tidy.mlogit()

带有列的 tibble::tibble()

.fitted

拟合值或预测值。

.probability

模态类别的类别概率。

.resid

观察值和拟合值之间的差异。

例子


# load libraries for models and data
library(mlogit)
#> Loading required package: dfidx
#> 
#> Attaching package: ‘dfidx’
#> The following object is masked from ‘package:ordinal’:
#> 
#>     slice
#> The following object is masked from ‘package:MASS’:
#> 
#>     select
#> The following object is masked from ‘package:stats’:
#> 
#>     filter
#> 
#> Attaching package: ‘mlogit’
#> The following object is masked from ‘package:lfe’:
#> 
#>     waldtest

data("Fishing", package = "mlogit")
Fish <- dfidx(Fishing, varying = 2:9, shape = "wide", choice = "mode")

# fit model
m <- mlogit(mode ~ price + catch | income, data = Fish)

# summarize model fit with tidiers
tidy(m)
#> # A tibble: 8 × 5
#>   term                  estimate std.error statistic  p.value
#>   <chr>                    <dbl>     <dbl>     <dbl>    <dbl>
#> 1 (Intercept):boat     0.527     0.223         2.37  1.79e- 2
#> 2 (Intercept):charter  1.69      0.224         7.56  3.95e-14
#> 3 (Intercept):pier     0.778     0.220         3.53  4.18e- 4
#> 4 price               -0.0251    0.00173     -14.5   0       
#> 5 catch                0.358     0.110         3.26  1.12e- 3
#> 6 income:boat          0.0000894 0.0000501     1.79  7.40e- 2
#> 7 income:charter      -0.0000333 0.0000503    -0.661 5.08e- 1
#> 8 income:pier         -0.000128  0.0000506    -2.52  1.18e- 2
augment(m)
#> # A tibble: 4,728 × 9
#>       id alternative chosen price  catch income .probability .fitted
#>    <int> <fct>       <lgl>  <dbl>  <dbl>  <dbl>        <dbl>   <dbl>
#>  1     1 beach       FALSE  158.  0.0678  7083.      0.125    -3.94 
#>  2     1 boat        FALSE  158.  0.260   7083.      0.427    -2.71 
#>  3     1 charter     TRUE   183.  0.539   7083.      0.339    -2.94 
#>  4     1 pier        FALSE  158.  0.0503  7083.      0.109    -4.07 
#>  5     2 beach       FALSE   15.1 0.105   1250.      0.116    -0.342
#>  6     2 boat        FALSE   10.5 0.157   1250.      0.251     0.431
#>  7     2 charter     TRUE    34.5 0.467   1250.      0.423     0.952
#>  8     2 pier        FALSE   15.1 0.0451  1250.      0.210     0.255
#>  9     3 beach       FALSE  162.  0.533   3750.      0.00689  -3.87 
#> 10     3 boat        TRUE    24.3 0.241   3750.      0.465     0.338
#> # ℹ 4,718 more rows
#> # ℹ 1 more variable: .resid <dbl>
glance(m)
#> # A tibble: 1 × 6
#>   logLik  rho2 rho20   AIC   BIC  nobs
#>    <dbl> <dbl> <dbl> <dbl> <dbl> <int>
#> 1 -1215. 0.189 0.258 2446.    NA  1182
源代码:R/mlogit-tidiers.R

相关用法


注:本文由纯净天空筛选整理自大神的英文原创作品 Augment data with information from a(n) mlogit object。非经特殊声明,原始代码版权归原作者所有,本译文未经允许或授权,请勿转载或复制。