當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom glance.mjoint 查看 a(n) mjoint 對象


Glance 接受模型對象並返回 tibble::tibble(),其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。

Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。

Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA

無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA 進行填充。

用法

# S3 method for mjoint
glance(x, ...)

參數

x

joineRML::mjoint() 返回的 mjoint 對象。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

也可以看看

glance() , joineRML::mjoint()

其他 mjoint 整理器:tidy.mjoint()

恰好隻有一行和一列的 tibble::tibble()

AIC

模型的 Akaike 信息準則。

BIC

模型的貝葉斯信息準則。

logLik

模型的對數似然。 [stats::logLik()] 可能是一個有用的參考。

sigma2_j

j-th 縱向過程的估計殘差方差的平方根

例子


# broom only skips running these examples because the example models take a
# while to generate—they should run just fine, though!
if (FALSE) {


# load libraries for models and data
library(joineRML)

# fit a joint model with bivariate longitudinal outcomes
data(heart.valve)

hvd <- heart.valve[!is.na(heart.valve$log.grad) &
  !is.na(heart.valve$log.lvmi) &
  heart.valve$num <= 50, ]

fit <- mjoint(
  formLongFixed = list(
    "grad" = log.grad ~ time + sex + hs,
    "lvmi" = log.lvmi ~ time + sex
  ),
  formLongRandom = list(
    "grad" = ~ 1 | num,
    "lvmi" = ~ time | num
  ),
  formSurv = Surv(fuyrs, status) ~ age,
  data = hvd,
  inits = list("gamma" = c(0.11, 1.51, 0.80)),
  timeVar = "time"
)

# extract the survival fixed effects
tidy(fit)

# extract the longitudinal fixed effects
tidy(fit, component = "longitudinal")

# extract the survival fixed effects with confidence intervals
tidy(fit, ci = TRUE)

# extract the survival fixed effects with confidence intervals based
# on bootstrapped standard errors
bSE <- bootSE(fit, nboot = 5, safe.boot = TRUE)
tidy(fit, boot_se = bSE, ci = TRUE)

# augment original data with fitted longitudinal values and residuals
hvd2 <- augment(fit)

# extract model statistics
glance(fit)
}

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Glance at a(n) mjoint object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。