當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom glance.rq 查看 a(n) rq 對象


Glance 接受模型對象並返回 tibble::tibble(),其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。

Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。

Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA

無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA 進行填充。

用法

# S3 method for rq
glance(x, ...)

參數

x

quantreg::rq() 返回的 rq 對象。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

細節

隻能傳遞具有單個 tau 值的模型。對於多個值,請改用purrr::map() 工作流程,例如

taus %>%
  map(function(tau_val) rq(y ~ x, tau = tau_val)) %>%
  map_dfr(glance)

也可以看看

glance() , quantreg::rq()

其他 quantreg 整理器: augment.nlrq()augment.rqs()augment.rq()glance.nlrq()tidy.nlrq()tidy.rqs()tidy.rq()

恰好隻有一行和一列的 tibble::tibble()

AIC

模型的 Akaike 信息準則。

BIC

模型的貝葉斯信息準則。

df.residual

剩餘自由度。

logLik

模型的對數似然。 [stats::logLik()] 可能是一個有用的參考。

tau

分位數。

例子


# load modeling library and data
library(quantreg)

data(stackloss)

# median (l1) regression fit for the stackloss data.
mod1 <- rq(stack.loss ~ stack.x, .5)

# weighted sample median
mod2 <- rq(rnorm(50) ~ 1, weights = runif(50))

# summarize model fit with tidiers
tidy(mod1)
#> # A tibble: 4 × 5
#>   term              estimate conf.low conf.high   tau
#>   <chr>                <dbl>    <dbl>     <dbl> <dbl>
#> 1 (Intercept)       -39.7     -53.8    -24.5      0.5
#> 2 stack.xAir.Flow     0.832     0.509    1.17     0.5
#> 3 stack.xWater.Temp   0.574     0.272    3.04     0.5
#> 4 stack.xAcid.Conc.  -0.0609   -0.278    0.0153   0.5
glance(mod1)
#> # A tibble: 1 × 5
#>     tau logLik      AIC   BIC df.residual
#>   <dbl> <logLik>  <dbl> <dbl>       <int>
#> 1   0.5 -50.15272  108.  112.          17
augment(mod1)
#> # A tibble: 21 × 5
#>    stack.loss stack.x[,"Air.Flow"] [,"Water.Temp"]    .resid .fitted  .tau
#>         <dbl>                <dbl>           <dbl>     <dbl>   <dbl> <dbl>
#>  1         42                   80              27  5.06e+ 0    36.9   0.5
#>  2         37                   80              27 -1.42e-14    37     0.5
#>  3         37                   75              25  5.43e+ 0    31.6   0.5
#>  4         28                   62              24  7.63e+ 0    20.4   0.5
#>  5         18                   62              22 -1.22e+ 0    19.2   0.5
#>  6         18                   62              23 -1.79e+ 0    19.8   0.5
#>  7         19                   62              24 -1.00e+ 0    20     0.5
#>  8         20                   62              24 -7.11e-15    20     0.5
#>  9         15                   58              23 -1.46e+ 0    16.5   0.5
#> 10         14                   58              18 -2.03e- 2    14.0   0.5
#> # ℹ 11 more rows
#> # ℹ 1 more variable: stack.x[3] <dbl>

tidy(mod2)
#> # A tibble: 1 × 5
#>   term        estimate conf.low conf.high   tau
#>   <chr>          <dbl> <lgl>    <lgl>     <dbl>
#> 1 (Intercept)    0.124 NA       NA          0.5
glance(mod2)
#> # A tibble: 1 × 5
#>     tau logLik      AIC   BIC df.residual
#>   <dbl> <logLik>  <dbl> <dbl>       <int>
#> 1   0.5 -78.76986  160.  161.          49
augment(mod2)
#> # A tibble: 50 × 5
#>    `rnorm(50)` `(weights)` .resid .fitted  .tau
#>          <dbl>       <dbl>  <dbl>   <dbl> <dbl>
#>  1     0.393       0.696    0.269   0.124   0.5
#>  2     0.458       0.266    0.334   0.124   0.5
#>  3    -1.22        0.660   -1.34    0.124   0.5
#>  4    -1.12        0.212   -1.25    0.124   0.5
#>  5     0.993       0.00527  0.869   0.124   0.5
#>  6    -1.83        0.103   -1.96    0.124   0.5
#>  7     0.124       0.287    0       0.124   0.5
#>  8     0.591       0.444    0.467   0.124   0.5
#>  9     0.805       0.693    0.681   0.124   0.5
#> 10     0.00754     0.0209  -0.116   0.124   0.5
#> # ℹ 40 more rows

# varying tau to generate an rqs object
mod3 <- rq(stack.loss ~ stack.x, tau = c(.25, .5))

tidy(mod3)
#> # A tibble: 8 × 5
#>   term               estimate conf.low conf.high   tau
#>   <chr>                 <dbl>    <dbl>     <dbl> <dbl>
#> 1 (Intercept)       -3.6 e+ 1  -59.0     -7.84    0.25
#> 2 stack.xAir.Flow    5.00e- 1    0.229    0.970   0.25
#> 3 stack.xWater.Temp  1.00e+ 0    0.286    2.26    0.25
#> 4 stack.xAcid.Conc. -4.58e-16   -0.643    0.0861  0.25
#> 5 (Intercept)       -3.97e+ 1  -53.8    -24.5     0.5 
#> 6 stack.xAir.Flow    8.32e- 1    0.509    1.17    0.5 
#> 7 stack.xWater.Temp  5.74e- 1    0.272    3.04    0.5 
#> 8 stack.xAcid.Conc. -6.09e- 2   -0.278    0.0153  0.5 
augment(mod3)
#> # A tibble: 42 × 5
#>    stack.loss stack.x[,"Air.Flow"] [,"Water.Temp"] .tau     .resid .fitted
#>         <dbl>                <dbl>           <dbl> <chr>     <dbl>   <dbl>
#>  1         42                   80              27 0.25   1.10e+ 1    31.0
#>  2         42                   80              27 0.5    5.06e+ 0    36.9
#>  3         37                   80              27 0.25   6.00e+ 0    31.0
#>  4         37                   80              27 0.5   -1.42e-14    37  
#>  5         37                   75              25 0.25   1.05e+ 1    26.5
#>  6         37                   75              25 0.5    5.43e+ 0    31.6
#>  7         28                   62              24 0.25   9.00e+ 0    19  
#>  8         28                   62              24 0.5    7.63e+ 0    20.4
#>  9         18                   62              22 0.25   1.00e+ 0    17.0
#> 10         18                   62              22 0.5   -1.22e+ 0    19.2
#> # ℹ 32 more rows
#> # ℹ 1 more variable: stack.x[3] <dbl>

# glance cannot handle rqs objects like `mod3`--use a purrr
# `map`-based workflow instead

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Glance at a(n) rq object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。