當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom glance.felm 瞥一眼毛氈物體


Glance 接受模型對象並返回 tibble::tibble(),其中僅包含一行模型摘要。摘要通常是擬合優度度量、殘差假設檢驗的 p 值或模型收斂信息。

Glance 永遠不會返返回自對建模函數的原始調用的信息。這包括建模函數的名稱或傳遞給建模函數的任何參數。

Glance 不計算匯總度量。相反,它將這些計算外包給適當的方法並將結果收集在一起。有時擬合優度測量是不確定的。在這些情況下,該度量將報告為 NA

無論模型矩陣是否秩虧,Glance 都會返回相同的列數。如果是這樣,則不再具有明確定義值的列中的條目將使用適當類型的 NA 進行填充。

用法

# S3 method for felm
glance(x, ...)

參數

x

lfe::felm() 返回的 felm 對象。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

恰好隻有一行和一列的 tibble::tibble()

adj.r.squared

調整後的 R 平方統計量,除了考慮自由度之外,與 R 平方統計量類似。

df

模型使用的自由度。

df.residual

剩餘自由度。

nobs

使用的觀察數。

p.value

對應於檢驗統計量的 P 值。

r.squared

R 平方統計量,或模型解釋的變異百分比。也稱為決定係數。

sigma

殘差的估計標準誤差。

statistic

檢驗統計量。

例子


# load libraries for models and data
library(lfe)

# use built-in `airquality` dataset
head(airquality)
#>   Ozone Solar.R Wind Temp Month Day
#> 1    41     190  7.4   67     5   1
#> 2    36     118  8.0   72     5   2
#> 3    12     149 12.6   74     5   3
#> 4    18     313 11.5   62     5   4
#> 5    NA      NA 14.3   56     5   5
#> 6    28      NA 14.9   66     5   6

# no FEs; same as lm()
est0 <- felm(Ozone ~ Temp + Wind + Solar.R, airquality)

# summarize model fit with tidiers
tidy(est0)
#> # A tibble: 4 × 5
#>   term        estimate std.error statistic       p.value
#>   <chr>          <dbl>     <dbl>     <dbl>         <dbl>
#> 1 (Intercept) -64.3      23.1        -2.79 0.00623      
#> 2 Temp          1.65      0.254       6.52 0.00000000242
#> 3 Wind         -3.33      0.654      -5.09 0.00000152   
#> 4 Solar.R       0.0598    0.0232      2.58 0.0112       
augment(est0)
#> # A tibble: 111 × 7
#>    .rownames Ozone  Temp  Wind Solar.R .fitted  .resid
#>    <chr>     <int> <int> <dbl>   <int>   <dbl>   <dbl>
#>  1 1            41    67   7.4     190   33.0    7.95 
#>  2 2            36    72   8       118   35.0    1.00 
#>  3 3            12    74  12.6     149   24.8  -12.8  
#>  4 4            18    62  11.5     313   18.5   -0.475
#>  5 7            23    65   8.6     299   32.3   -9.26 
#>  6 8            19    59  13.8      99   -6.95  25.9  
#>  7 9             8    61  20.1      19  -29.4   37.4  
#>  8 12           16    69   9.7     256   32.6  -16.6  
#>  9 13           11    66   9.2     290   31.4  -20.4  
#> 10 14           14    68  10.9     274   28.1  -14.1  
#> # ℹ 101 more rows

# add month fixed effects
est1 <- felm(Ozone ~ Temp + Wind + Solar.R | Month, airquality)

# summarize model fit with tidiers
tidy(est1)
#> # A tibble: 3 × 5
#>   term    estimate std.error statistic     p.value
#>   <chr>      <dbl>     <dbl>     <dbl>       <dbl>
#> 1 Temp      1.88      0.341       5.50 0.000000274
#> 2 Wind     -3.11      0.660      -4.71 0.00000778 
#> 3 Solar.R   0.0522    0.0237      2.21 0.0296     
tidy(est1, fe = TRUE)
#> # A tibble: 8 × 7
#>   term    estimate std.error statistic     p.value     N  comp
#>   <chr>      <dbl>     <dbl>     <dbl>       <dbl> <int> <dbl>
#> 1 Temp      1.88      0.341       5.50 0.000000274    NA    NA
#> 2 Wind     -3.11      0.660      -4.71 0.00000778     NA    NA
#> 3 Solar.R   0.0522    0.0237      2.21 0.0296         NA    NA
#> 4 Month.5 -74.2       4.23      -17.5  2.00           24     1
#> 5 Month.6 -89.0       6.91      -12.9  2.00            9     1
#> 6 Month.7 -83.0       4.06      -20.4  2              26     1
#> 7 Month.8 -78.4       4.32      -18.2  2.00           23     1
#> 8 Month.9 -90.2       3.85      -23.4  2              29     1
augment(est1)
#> # A tibble: 111 × 8
#>    .rownames Ozone  Temp  Wind Solar.R Month .fitted .resid
#>    <chr>     <int> <int> <dbl>   <int> <int>   <dbl>  <dbl>
#>  1 1            41    67   7.4     190     5   38.3    2.69
#>  2 2            36    72   8       118     5   42.1   -6.07
#>  3 3            12    74  12.6     149     5   33.1  -21.1 
#>  4 4            18    62  11.5     313     5   22.6   -4.62
#>  5 7            23    65   8.6     299     5   36.5  -13.5 
#>  6 8            19    59  13.8      99     5   -1.33  20.3 
#>  7 9             8    61  20.1      19     5  -21.3   29.3 
#>  8 12           16    69   9.7     256     5   38.4  -22.4 
#>  9 13           11    66   9.2     290     5   36.1  -25.1 
#> 10 14           14    68  10.9     274     5   33.7  -19.7 
#> # ℹ 101 more rows
glance(est1)
#> # A tibble: 1 × 8
#>   r.squared adj.r.squared sigma statistic  p.value    df df.residual  nobs
#>       <dbl>         <dbl> <dbl>     <dbl>    <dbl> <dbl>       <dbl> <int>
#> 1     0.637         0.612  20.7      25.8 4.57e-20   103         103   111

# the "se.type" argument can be used to switch out different standard errors
# types on the fly. In turn, this can be useful exploring the effect of
# different error structures on model inference.
tidy(est1, se.type = "iid")
#> # A tibble: 3 × 5
#>   term    estimate std.error statistic     p.value
#>   <chr>      <dbl>     <dbl>     <dbl>       <dbl>
#> 1 Temp      1.88      0.341       5.50 0.000000274
#> 2 Wind     -3.11      0.660      -4.71 0.00000778 
#> 3 Solar.R   0.0522    0.0237      2.21 0.0296     
tidy(est1, se.type = "robust")
#> # A tibble: 3 × 5
#>   term    estimate std.error statistic     p.value
#>   <chr>      <dbl>     <dbl>     <dbl>       <dbl>
#> 1 Temp      1.88      0.344       5.45 0.000000344
#> 2 Wind     -3.11      0.903      -3.44 0.000834   
#> 3 Solar.R   0.0522    0.0226      2.31 0.0227     

# add clustered SEs (also by month)
est2 <- felm(Ozone ~ Temp + Wind + Solar.R | Month | 0 | Month, airquality)

# summarize model fit with tidiers
tidy(est2, conf.int = TRUE)
#> # A tibble: 3 × 7
#>   term    estimate std.error statistic  p.value conf.low conf.high
#>   <chr>      <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 Temp      1.88      0.182      10.3  0.000497   1.37       2.38 
#> 2 Wind     -3.11      1.31       -2.38 0.0760    -6.74       0.518
#> 3 Solar.R   0.0522    0.0408      1.28 0.270     -0.0611     0.166
tidy(est2, conf.int = TRUE, se.type = "cluster")
#> # A tibble: 3 × 7
#>   term    estimate std.error statistic  p.value conf.low conf.high
#>   <chr>      <dbl>     <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 Temp      1.88      0.182      10.3  0.000497   1.37       2.38 
#> 2 Wind     -3.11      1.31       -2.38 0.0760    -6.74       0.518
#> 3 Solar.R   0.0522    0.0408      1.28 0.270     -0.0611     0.166
tidy(est2, conf.int = TRUE, se.type = "robust")
#> # A tibble: 3 × 7
#>   term    estimate std.error statistic p.value conf.low conf.high
#>   <chr>      <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 Temp      1.88      0.344       5.45 0.00550   0.920      2.83 
#> 2 Wind     -3.11      0.903      -3.44 0.0262   -5.62      -0.602
#> 3 Solar.R   0.0522    0.0226      2.31 0.0817   -0.0104     0.115
tidy(est2, conf.int = TRUE, se.type = "iid")
#> # A tibble: 3 × 7
#>   term    estimate std.error statistic p.value conf.low conf.high
#>   <chr>      <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 Temp      1.88      0.341       5.50 0.00532   0.929      2.82 
#> 2 Wind     -3.11      0.660      -4.71 0.00924  -4.94      -1.28 
#> 3 Solar.R   0.0522    0.0237      2.21 0.0920   -0.0135     0.118
源代碼:R/lfe-tidiers.R

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Glance at a(n) felm object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。