當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom tidy.mjoint 整理 a(n) mjoint 對象


Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。

用法

# S3 method for mjoint
tidy(
  x,
  component = "survival",
  conf.int = FALSE,
  conf.level = 0.95,
  boot_se = NULL,
  ...
)

參數

x

joineRML::mjoint() 返回的 mjoint 對象。

component

指定是否整理模型的生存部分或縱向部分的字符。必須是 "survival""longitudinal" 。默認為 "survival"

conf.int

邏輯指示是否在整理的輸出中包含置信區間。默認為 FALSE

conf.level

用於置信區間的置信水平(如果 conf.int = TRUE )。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。

boot_se

可選來自 joineRML::bootSE()bootSE 對象。如果指定,則通過引導程序計算置信區間。默認為 NULL ,在這種情況下,標準誤差是根據經驗信息矩陣計算的。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

也可以看看

tidy() , joineRML::mjoint() , joineRML::bootSE()

其他 mjoint 整理器:glance.mjoint()

帶有列的 tibble::tibble()

conf.high

估計置信區間的上限。

conf.low

估計置信區間的下限。

estimate

回歸項的估計值。

p.value

與觀察到的統計量相關的兩側 p 值。

statistic

在回歸項非零的假設中使用的 T-statistic 的值。

std.error

回歸項的標準誤差。

term

回歸項的名稱。

例子


# broom only skips running these examples because the example models take a
# while to generate—they should run just fine, though!
if (FALSE) {


# load libraries for models and data
library(joineRML)

# fit a joint model with bivariate longitudinal outcomes
data(heart.valve)

hvd <- heart.valve[!is.na(heart.valve$log.grad) &
  !is.na(heart.valve$log.lvmi) &
  heart.valve$num <= 50, ]

fit <- mjoint(
  formLongFixed = list(
    "grad" = log.grad ~ time + sex + hs,
    "lvmi" = log.lvmi ~ time + sex
  ),
  formLongRandom = list(
    "grad" = ~ 1 | num,
    "lvmi" = ~ time | num
  ),
  formSurv = Surv(fuyrs, status) ~ age,
  data = hvd,
  inits = list("gamma" = c(0.11, 1.51, 0.80)),
  timeVar = "time"
)

# extract the survival fixed effects
tidy(fit)

# extract the longitudinal fixed effects
tidy(fit, component = "longitudinal")

# extract the survival fixed effects with confidence intervals
tidy(fit, ci = TRUE)

# extract the survival fixed effects with confidence intervals based
# on bootstrapped standard errors
bSE <- bootSE(fit, nboot = 5, safe.boot = TRUE)
tidy(fit, boot_se = bSE, ci = TRUE)

# augment original data with fitted longitudinal values and residuals
hvd2 <- augment(fit)

# extract model statistics
glance(fit)
}

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Tidy a(n) mjoint object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。