當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom tidy.biglm 整理 a(n) biglm 對象


Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。

用法

# S3 method for biglm
tidy(x, conf.int = FALSE, conf.level = 0.95, exponentiate = FALSE, ...)

參數

x

通過調用 biglm::biglm()biglm::bigglm() 創建的 biglm 對象。

conf.int

邏輯指示是否在整理的輸出中包含置信區間。默認為 FALSE

conf.level

用於置信區間的置信水平(如果 conf.int = TRUE )。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。

exponentiate

邏輯指示是否對係數估計值取冪。這對於邏輯回歸和多項回歸來說是典型的,但如果沒有 log 或 logit 鏈接,那麽這是一個壞主意。默認為 FALSE

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

也可以看看

tidy() , biglm::biglm() , biglm::bigglm()

其他 biglm 整理器:glance.biglm()

帶有列的 tibble::tibble()

conf.high

估計置信區間的上限。

conf.low

估計置信區間的下限。

estimate

回歸項的估計值。

p.value

與觀察到的統計量相關的兩側 p 值。

statistic

在回歸項非零的假設中使用的 T-statistic 的值。

std.error

回歸項的標準誤差。

term

回歸項的名稱。

例子


# load modeling library
library(biglm)

# fit model -- linear regression
bfit <- biglm(mpg ~ wt + disp, mtcars)

# summarize model fit with tidiers
tidy(bfit)
#> # A tibble: 3 × 4
#>   term        estimate std.error  p.value
#>   <chr>          <dbl>     <dbl>    <dbl>
#> 1 (Intercept)  35.0      2.16    1.11e-58
#> 2 wt           -3.35     1.16    4.00e- 3
#> 3 disp         -0.0177   0.00919 5.38e- 2
tidy(bfit, conf.int = TRUE)
#> # A tibble: 3 × 6
#>   term        estimate std.error  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)  35.0      2.16    1.11e-58  30.7    39.2     
#> 2 wt           -3.35     1.16    4.00e- 3  -5.63   -1.07    
#> 3 disp         -0.0177   0.00919 5.38e- 2  -0.0357  0.000288
tidy(bfit, conf.int = TRUE, conf.level = .9)
#> # A tibble: 3 × 6
#>   term        estimate std.error  p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>    <dbl>    <dbl>     <dbl>
#> 1 (Intercept)  35.0      2.16    1.11e-58  31.4     38.5    
#> 2 wt           -3.35     1.16    4.00e- 3  -5.27    -1.44   
#> 3 disp         -0.0177   0.00919 5.38e- 2  -0.0328  -0.00261

glance(bfit)
#> # A tibble: 1 × 5
#>   r.squared   AIC deviance df.residual  nobs
#>       <dbl> <dbl>    <dbl>       <int> <int>
#> 1     0.781  253.     247.          29    32

# fit model -- logistic regression
bgfit <- bigglm(am ~ mpg, mtcars, family = binomial())

# summarize model fit with tidiers
tidy(bgfit)
#> # A tibble: 2 × 4
#>   term        estimate std.error p.value
#>   <chr>          <dbl>     <dbl>   <dbl>
#> 1 (Intercept)   -6.60      2.35  0.00498
#> 2 mpg            0.307     0.115 0.00751
tidy(bgfit, exponentiate = TRUE)
#> # A tibble: 2 × 4
#>   term        estimate std.error p.value
#>   <chr>          <dbl>     <dbl>   <dbl>
#> 1 (Intercept)  0.00136     2.35  0.00498
#> 2 mpg          1.36        0.115 0.00751
tidy(bgfit, conf.int = TRUE)
#> # A tibble: 2 × 6
#>   term        estimate std.error p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 (Intercept)   -6.60      2.35  0.00498 -11.2       -1.99 
#> 2 mpg            0.307     0.115 0.00751   0.0819     0.532
tidy(bgfit, conf.int = TRUE, conf.level = .9)
#> # A tibble: 2 × 6
#>   term        estimate std.error p.value conf.low conf.high
#>   <chr>          <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 (Intercept)   -6.60      2.35  0.00498  -10.5      -2.74 
#> 2 mpg            0.307     0.115 0.00751    0.118     0.496
tidy(bgfit, conf.int = TRUE, conf.level = .9, exponentiate = TRUE)
#> # A tibble: 2 × 6
#>   term        estimate std.error p.value  conf.low conf.high
#>   <chr>          <dbl>     <dbl>   <dbl>     <dbl>     <dbl>
#> 1 (Intercept)  0.00136     2.35  0.00498 0.0000283    0.0648
#> 2 mpg          1.36        0.115 0.00751 1.13         1.64  

glance(bgfit)
#> # A tibble: 1 × 5
#>   r.squared   AIC deviance df.residual  nobs
#>       <dbl> <dbl>    <dbl>       <dbl> <dbl>
#> 1     0.175  33.7     29.7          30    32
源代碼:R/biglm-tidiers.R

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Tidy a(n) biglm object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。