Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。
參數
- x
-
從
ordinal::clmm()
返回的clmm
對象。 - conf.int
-
邏輯指示是否在整理的輸出中包含置信區間。默認為
FALSE
。 - conf.level
-
用於置信區間的置信水平(如果
conf.int = TRUE
)。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。 - exponentiate
-
邏輯指示是否對係數估計值取冪。這對於邏輯回歸和多項回歸來說是典型的,但如果沒有 log 或 logit 鏈接,那麽這是一個壞主意。默認為
FALSE
。 - ...
-
附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到
...
中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞conf.lvel = 0.9
,所有計算將使用conf.level = 0.95
進行。這裏有兩個異常:
注意
在 broom 0.7.0
中, coefficient_type
列已重命名為 coef.type
,並且內容也發生了更改。
注意,intercept
類型係數對應於alpha
參數,location
類型係數對應於beta
參數,並且scale
類型係數對應於zeta
參數。
也可以看看
tidy、ordinal::clmm()
、ordinal::confint.clm()
其他序號整理器:augment.clm()
, augment.polr()
, glance.clmm()
, glance.clm()
, glance.polr()
, glance.svyolr()
, tidy.clm()
, tidy.polr()
, tidy.svyolr()
值
帶有列的 tibble::tibble()
:
- conf.high
-
估計置信區間的上限。
- conf.low
-
估計置信區間的下限。
- estimate
-
回歸項的估計值。
- p.value
-
與觀察到的統計量相關的兩側 p 值。
- statistic
-
在回歸項非零的假設中使用的 T-statistic 的值。
- std.error
-
回歸項的標準誤差。
- term
-
回歸項的名稱。
例子
# load libraries for models and data
library(ordinal)
# fit model
fit <- clmm(rating ~ temp + contact + (1 | judge), data = wine)
# summarize model fit with tidiers
tidy(fit)
#> # A tibble: 6 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -1.62 0.682 -2.38 1.74e- 2 intercept
#> 2 2|3 1.51 0.604 2.51 1.22e- 2 intercept
#> 3 3|4 4.23 0.809 5.23 1.72e- 7 intercept
#> 4 4|5 6.09 0.972 6.26 3.82e-10 intercept
#> 5 tempwarm 3.06 0.595 5.14 2.68e- 7 location
#> 6 contactyes 1.83 0.513 3.58 3.44e- 4 location
tidy(fit, conf.int = TRUE, conf.level = 0.9)
#> # A tibble: 6 × 8
#> term estimate std.error statistic p.value conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -1.62 0.682 -2.38 1.74e- 2 -2.75 -0.501 intercept
#> 2 2|3 1.51 0.604 2.51 1.22e- 2 0.520 2.51 intercept
#> 3 3|4 4.23 0.809 5.23 1.72e- 7 2.90 5.56 intercept
#> 4 4|5 6.09 0.972 6.26 3.82e-10 4.49 7.69 intercept
#> 5 temp… 3.06 0.595 5.14 2.68e- 7 2.08 4.04 location
#> 6 cont… 1.83 0.513 3.58 3.44e- 4 0.992 2.68 location
tidy(fit, conf.int = TRUE, exponentiate = TRUE)
#> # A tibble: 6 × 8
#> term estimate std.error statistic p.value conf.low conf.high coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 0.197 0.682 -2.38 1.74e- 2 0.0518 0.751 intercept
#> 2 2|3 4.54 0.604 2.51 1.22e- 2 1.39 14.8 intercept
#> 3 3|4 68.6 0.809 5.23 1.72e- 7 14.1 335. intercept
#> 4 4|5 441. 0.972 6.26 3.82e-10 65.5 2965. intercept
#> 5 temp… 21.4 0.595 5.14 2.68e- 7 6.66 68.7 location
#> 6 cont… 6.26 0.513 3.58 3.44e- 4 2.29 17.1 location
glance(fit)
#> # A tibble: 1 × 5
#> edf AIC BIC logLik nobs
#> <dbl> <dbl> <dbl> <logLik> <dbl>
#> 1 7 177. 193. -81.56541 72
# ...and again with another model specification
fit2 <- clmm(rating ~ temp + (1 | judge), nominal = ~contact, data = wine)
#> Warning: unrecognized control elements named ‘nominal’ ignored
tidy(fit2)
#> # A tibble: 5 × 6
#> term estimate std.error statistic p.value coef.type
#> <chr> <dbl> <dbl> <dbl> <dbl> <chr>
#> 1 1|2 -2.20 0.613 -3.59 0.000333 intercept
#> 2 2|3 0.545 0.476 1.15 0.252 intercept
#> 3 3|4 2.84 0.607 4.68 0.00000291 intercept
#> 4 4|5 4.48 0.751 5.96 0.00000000256 intercept
#> 5 tempwarm 2.67 0.554 4.81 0.00000147 location
glance(fit2)
#> # A tibble: 1 × 5
#> edf AIC BIC logLik nobs
#> <dbl> <dbl> <dbl> <logLik> <dbl>
#> 1 6 189. 203. -88.73882 72
相關用法
- R broom tidy.clm 整理 a(n) clm 對象
- R broom tidy.cld 整理 a(n) cld 對象
- R broom tidy.cv.glmnet 整理 a(n) cv.glmnet 對象
- R broom tidy.coeftest 整理 a(n) coeftest 對象
- R broom tidy.cch 整理 a(n) cch 對象
- R broom tidy.coxph 整理 a(n) coxph 對象
- R broom tidy.confint.glht 整理 a(n) confint.glht 對象
- R broom tidy.confusionMatrix 整理一個(n)confusionMatrix對象
- R broom tidy.crr 整理 a(n) cmprsk 對象
- R broom tidy.robustbase.glmrob 整理 a(n) glmrob 對象
- R broom tidy.acf 整理 a(n) acf 對象
- R broom tidy.robustbase.lmrob 整理 a(n) lmrob 對象
- R broom tidy.biglm 整理 a(n) biglm 對象
- R broom tidy.garch 整理 a(n) garch 對象
- R broom tidy.rq 整理 a(n) rq 對象
- R broom tidy.kmeans 整理 a(n) kmeans 對象
- R broom tidy.betamfx 整理 a(n) betamfx 對象
- R broom tidy.anova 整理 a(n) anova 對象
- R broom tidy.btergm 整理 a(n) btergm 對象
- R broom tidy.roc 整理 a(n) roc 對象
- R broom tidy.poLCA 整理 a(n) poLCA 對象
- R broom tidy.emmGrid 整理 a(n) emmGrid 對象
- R broom tidy.Kendall 整理 a(n) Kendall 對象
- R broom tidy.survreg 整理 a(n) survreg 對象
- R broom tidy.ergm 整理 a(n) ergm 對象
注:本文由純淨天空篩選整理自等大神的英文原創作品 Tidy a(n) clmm object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。