當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


R broom tidy.crr 整理 a(n) cmprsk 對象


Tidy 總結了有關模型組件的信息。模型組件可能是回歸中的單個項、單個假設、聚類或類。 tidy 所認為的模型組件的確切含義因模型而異,但通常是不言而喻的。如果模型具有多種不同類型的組件,您將需要指定要返回哪些組件。

用法

# S3 method for crr
tidy(x, exponentiate = FALSE, conf.int = FALSE, conf.level = 0.95, ...)

參數

x

cmprsk::crr() 返回的 crr 對象。

exponentiate

邏輯指示是否對係數估計值取冪。這對於邏輯回歸和多項回歸來說是典型的,但如果沒有 log 或 logit 鏈接,那麽這是一個壞主意。默認為 FALSE

conf.int

邏輯指示是否在整理的輸出中包含置信區間。默認為 FALSE

conf.level

用於置信區間的置信水平(如果 conf.int = TRUE )。必須嚴格大於 0 且小於 1。默認為 0.95,對應於 95% 的置信區間。

...

附加參數。不曾用過。僅需要匹配通用簽名。注意:拚寫錯誤的參數將被吸收到 ... 中,並被忽略。如果拚寫錯誤的參數有默認值,則將使用默認值。例如,如果您傳遞 conf.lvel = 0.9 ,所有計算將使用 conf.level = 0.95 進行。這裏有兩個異常:

  • tidy() 方法在提供 exponentiate 參數時會發出警告(如果該參數將被忽略)。

  • augment() 方法在提供 newdata 參數時會發出警告(如果該參數將被忽略)。

也可以看看

tidy() , cmprsk::crr()

其他 cmprsk 整理器:glance.crr()

帶有列的 tibble::tibble()

conf.high

估計置信區間的上限。

conf.low

估計置信區間的下限。

estimate

回歸項的估計值。

p.value

與觀察到的統計量相關的兩側 p 值。

statistic

在回歸項非零的假設中使用的 T-statistic 的值。

std.error

回歸項的標準誤差。

例子


library(cmprsk)

# time to loco-regional failure (lrf)
lrf_time <- rexp(100)
lrf_event <- sample(0:2, 100, replace = TRUE)
trt <- sample(0:1, 100, replace = TRUE)
strt <- sample(1:2, 100, replace = TRUE)

# fit model
x <- crr(lrf_time, lrf_event, cbind(trt, strt))

# summarize model fit with tidiers
tidy(x, conf.int = TRUE)
#> # A tibble: 2 × 7
#>   term  estimate std.error statistic p.value conf.low conf.high
#>   <chr>    <dbl>     <dbl>     <dbl>   <dbl>    <dbl>     <dbl>
#> 1 trt     -0.467     0.362    -1.29     0.2    -1.18      0.242
#> 2 strt     0.237     0.360     0.660    0.51   -0.468     0.943
glance(x)
#> # A tibble: 1 × 5
#>   converged logLik  nobs    df statistic
#>   <lgl>      <dbl> <int> <dbl>     <dbl>
#> 1 TRUE       -125.   100     2      2.03
源代碼:R/cmprsk-tidiers.R

相關用法


注:本文由純淨天空篩選整理自大神的英文原創作品 Tidy a(n) cmprsk object。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。