本文整理汇总了Python中quaternion.Quaternion.rotate方法的典型用法代码示例。如果您正苦于以下问题:Python Quaternion.rotate方法的具体用法?Python Quaternion.rotate怎么用?Python Quaternion.rotate使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类quaternion.Quaternion
的用法示例。
在下文中一共展示了Quaternion.rotate方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: RigidTransform
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import rotate [as 别名]
class RigidTransform(object):
def __init__(self, rotation_quat, translation_vec):
self.quat = Quaternion(rotation_quat)
self.tvec = numpy.array(translation_vec)
def inverse(self):
""" returns a new RigidTransform that corresponds to the inverse of this one """
qinv = self.quat.inverse()
return RigidTransform(qinv, qinv.rotate(- self.tvec))
def interpolate(self, other_transform, this_weight):
assert this_weight >= 0 and this_weight <= 1
t = self.tvec * this_weight + other_transform.tvec * (1 - this_weight)
r = self.quat.interpolate(other_transform.quat, this_weight)
return RigidTransform(r, t)
def __mul__(self, other):
if isinstance(other, RigidTransform):
t = self.quat.rotate(other.tvec) + self.tvec
r = self.quat * other.quat
return RigidTransform(r, t)
else:
olen = len(other)
if olen == 3:
r = numpy.array(self.quat.rotate(other))
return r + self.tvec
elif olen == 4:
return np.dot(self.to_homogeneous_matrix(), other)
else:
raise ValueError()
def to_homogeneous_matrix(self):
result = self.quat.to_matrix_homogeneous()
result.A[:3, 3] = self.tvec
return result
def to_roll_pitch_yaw_x_y_z(self):
r, p, y = self.quat.to_roll_pitch_yaw()
return numpy.array((r, p, y, self.tvec[0], self.tvec[1], self.tvec[2]))
@staticmethod
def from_roll_pitch_yaw_x_y_z(r, p, yaw, x, y, z):
q = Quaternion.from_roll_pitch_yaw(r, p, yaw)
return RigidTransform(q, (x, y, z))
def quaternion(self):
return self.quat
def translation(self):
return self.tvec
@staticmethod
def identity():
return RigidTransform((1, 0, 0, 0), (0, 0, 0))
示例2: test_matrix_io
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import rotate [as 别名]
def test_matrix_io(self):
v = np.random.uniform(-100, 100, 3)
for i in range(10):
q0 = Quaternion.random()
R = q0.rotation_matrix()
q1 = Quaternion(matrix=R)
np.testing.assert_almost_equal(q0.rotate(v), np.dot(R, v), decimal=ALMOST_EQUAL_TOLERANCE)
np.testing.assert_almost_equal(q0.rotate(v), q1.rotate(v), decimal=ALMOST_EQUAL_TOLERANCE)
np.testing.assert_almost_equal(q1.rotate(v), np.dot(R, v), decimal=ALMOST_EQUAL_TOLERANCE)
self.assertTrue((q0 == q1) or (q0 == -q1)) # q1 and -q1 are equivalent rotations
示例3: test_integration
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import rotate [as 别名]
def test_integration(self):
rotation_rate = [0, 0, 2*pi] # one rev per sec around z
v = [1, 0, 0] # test vector
for dt in [0, 0.25, 0.5, 0.75, 1, 2, 10, 1e-10, random()*10]: # time step in seconds
qt = Quaternion() # no rotation
qt.integrate(rotation_rate, dt)
q_truth = Quaternion(axis=[0,0,1], angle=dt*2*pi)
a = qt.rotate(v)
b = q_truth.rotate(v)
np.testing.assert_almost_equal(a, b, decimal=ALMOST_EQUAL_TOLERANCE)
self.assertTrue(qt.is_unit())
# Check integrate() is norm-preserving over many calls
q = Quaternion()
for i in range(1000):
q.integrate([pi, 0, 0], 0.001)
self.assertTrue(q.is_unit())
示例4: test_rotate
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import rotate [as 别名]
def test_rotate(self):
q = Quaternion(axis=[1,1,1], angle=2*pi/3)
q2 = Quaternion(axis=[1, 0, 0], angle=-pi)
q3 = Quaternion(axis=[1, 0, 0], angle=pi)
precision = ALMOST_EQUAL_TOLERANCE
for r in [1, 3.8976, -69.7, -0.000001]:
# use np.testing.assert_almost_equal() to compare float sequences
np.testing.assert_almost_equal(q.rotate((r, 0, 0)), (0, r, 0), decimal=ALMOST_EQUAL_TOLERANCE)
np.testing.assert_almost_equal(q.rotate([0, r, 0]), [0, 0, r], decimal=ALMOST_EQUAL_TOLERANCE)
np.testing.assert_almost_equal(q.rotate(np.array([0, 0, r])), np.array([r, 0, 0]), decimal=ALMOST_EQUAL_TOLERANCE)
self.assertEqual(q.rotate(Quaternion(vector=[-r, 0, 0])), Quaternion(vector=[0, -r, 0]))
np.testing.assert_almost_equal(q.rotate([0, -r, 0]), [0, 0, -r], decimal=ALMOST_EQUAL_TOLERANCE)
self.assertEqual(q.rotate(Quaternion(vector=[0, 0, -r])), Quaternion(vector=[-r, 0, 0]))
np.testing.assert_almost_equal(q2.rotate((r, 0, 0)), q3.rotate((r, 0, 0)), decimal=ALMOST_EQUAL_TOLERANCE)
np.testing.assert_almost_equal(q2.rotate((0, r, 0)), q3.rotate((0, r, 0)), decimal=ALMOST_EQUAL_TOLERANCE)
np.testing.assert_almost_equal(q2.rotate((0, 0, r)), q3.rotate((0, 0, r)), decimal=ALMOST_EQUAL_TOLERANCE)
示例5: test_init_from_explicit_matrix
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import rotate [as 别名]
def test_init_from_explicit_matrix(self):
def R_z(theta):
"""
Generate a rotation matrix describing a rotation of theta degrees about the z-axis
"""
c = cos(theta)
s = sin(theta)
return np.array([
[c,-s, 0],
[s, c, 0],
[0, 0, 1]])
v = np.array([1, 0, 0])
for angle in [0, pi/6, pi/4, pi/2, pi, 4*pi/3, 3*pi/2, 2*pi]:
R = R_z(angle) # rotation matrrix describing rotation of 90 about +z
v_prime_r = np.dot(R, v)
q1 = Quaternion(axis=[0,0,1], angle=angle)
v_prime_q1 = q1.rotate(v)
np.testing.assert_almost_equal(v_prime_r, v_prime_q1, decimal=ALMOST_EQUAL_TOLERANCE)
q2 = Quaternion(matrix=R)
v_prime_q2 = q2.rotate(v)
np.testing.assert_almost_equal(v_prime_q2, v_prime_r, decimal=ALMOST_EQUAL_TOLERANCE)
R = np.matrix(np.eye(3))
q3 = Quaternion(matrix=R)
v_prime_q3 = q3.rotate(v)
np.testing.assert_almost_equal(v, v_prime_q3, decimal=ALMOST_EQUAL_TOLERANCE)
self.assertEqual(q3, Quaternion())
R[0,1] += 3 # introduce error to make matrix non-orthogonal
with self.assertRaises(ValueError):
q4 = Quaternion(matrix=R)