本文整理汇总了Python中quaternion.Quaternion.inverse方法的典型用法代码示例。如果您正苦于以下问题:Python Quaternion.inverse方法的具体用法?Python Quaternion.inverse怎么用?Python Quaternion.inverse使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类quaternion.Quaternion
的用法示例。
在下文中一共展示了Quaternion.inverse方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: fqa
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import inverse [as 别名]
def fqa(msr):
ax = msr['accel.x']
ay = msr['accel.y']
az = msr['accel.z']
norm = math.sqrt(ax*ax + ay*ay + az*az)
# estimation of elevation quaternion (around y axes)
sin_theta_a = (ax / norm)
cos_theta_a = math.sqrt(1 - sin_theta_a ** 2)
sin_half_theta = math.copysign(1, sin_theta_a) * math.sqrt((1 - cos_theta_a) / 2)
cos_half_theta = math.sqrt((1 + cos_theta_a) / 2)
q_e = Quaternion(cos_half_theta, 0, sin_half_theta, 0)
# estimation of roll quaternion (around x axis)
sin_phi = (-ay / norm) / cos_theta_a
cos_phi = (-az / norm) / cos_theta_a
sin_half_phi = half_sin(sin_phi, cos_phi)
cos_half_phi = half_cos(sin_phi, cos_phi)
# TODO singularity avoidance!!!
q_r = Quaternion(cos_half_phi, sin_half_phi, 0, 0)
# estimation of azimuth quaternion (around z axis)
mx = msr['mag.x']
my = msr['mag.y']
mz = msr['mag.z']
norm = math.sqrt(mx*mx + my*my + mz*mz)
qm = Quaternion(0, mx / norm, my / norm, mz / norm)
qm_a = q_e.multiply(q_r).multiply(qm).multiply(q_r.inverse()).multiply(q_e.inverse())
Quaternion.normalize(qm_a)
cos_zeta = qm_a.c
sin_zeta = qm_a.b
sin_half_zeta = half_sin(sin_zeta, cos_zeta)
cos_half_zeta = half_cos(sin_zeta, cos_zeta)
q_a = Quaternion(cos_half_zeta, 0, 0, sin_half_zeta)
q_fqa = q_a.multiply(q_e).multiply(q_r)
return q_fqa
示例2: test_inverse
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import inverse [as 别名]
def test_inverse(self):
q1 = Quaternion(randomElements())
q2 = Quaternion.random()
if q1:
self.assertEqual(q1 * q1.inverse(), Quaternion(1.0, 0.0, 0.0, 0.0))
else:
with self.assertRaises(ZeroDivisionError):
q1 * q1.inverse()
self.assertEqual(q2 * q2.inverse(), Quaternion(1.0, 0.0, 0.0, 0.0))
示例3: RigidTransform
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import inverse [as 别名]
class RigidTransform(object):
def __init__(self, rotation_quat, translation_vec):
self.quat = Quaternion(rotation_quat)
self.tvec = numpy.array(translation_vec)
def inverse(self):
""" returns a new RigidTransform that corresponds to the inverse of this one """
qinv = self.quat.inverse()
return RigidTransform(qinv, qinv.rotate(- self.tvec))
def interpolate(self, other_transform, this_weight):
assert this_weight >= 0 and this_weight <= 1
t = self.tvec * this_weight + other_transform.tvec * (1 - this_weight)
r = self.quat.interpolate(other_transform.quat, this_weight)
return RigidTransform(r, t)
def __mul__(self, other):
if isinstance(other, RigidTransform):
t = self.quat.rotate(other.tvec) + self.tvec
r = self.quat * other.quat
return RigidTransform(r, t)
else:
olen = len(other)
if olen == 3:
r = numpy.array(self.quat.rotate(other))
return r + self.tvec
elif olen == 4:
return np.dot(self.to_homogeneous_matrix(), other)
else:
raise ValueError()
def to_homogeneous_matrix(self):
result = self.quat.to_matrix_homogeneous()
result.A[:3, 3] = self.tvec
return result
def to_roll_pitch_yaw_x_y_z(self):
r, p, y = self.quat.to_roll_pitch_yaw()
return numpy.array((r, p, y, self.tvec[0], self.tvec[1], self.tvec[2]))
@staticmethod
def from_roll_pitch_yaw_x_y_z(r, p, yaw, x, y, z):
q = Quaternion.from_roll_pitch_yaw(r, p, yaw)
return RigidTransform(q, (x, y, z))
def quaternion(self):
return self.quat
def translation(self):
return self.tvec
@staticmethod
def identity():
return RigidTransform((1, 0, 0, 0), (0, 0, 0))
示例4: test_quaternion_inverse
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import inverse [as 别名]
def test_quaternion_inverse(self):
'''Test that the quaternion inverse works.'''
# First construct any random unit quaternion. Not uniform.
s = 2*random.random() - 1.
p1 = (2. - 2*np.abs(s))*random.random() - (1. - np.abs(s))
p2 = ((2. - 2.*np.abs(s) - 2.*np.abs(p1))*random.random() -
(1. - np.abs(s) - np.abs(p1)))
p3 = np.sqrt(1. - s**2 - p1**2 - p2**2)
theta = Quaternion(np.array([s, p1, p2, p3]))
theta_inv = theta.inverse()
identity = theta*theta_inv
self.assertAlmostEqual(identity.s, 1.0)
self.assertAlmostEqual(identity.p[0], 0.0)
self.assertAlmostEqual(identity.p[1], 0.0)
self.assertAlmostEqual(identity.p[2], 0.0)
示例5: test_divide_by_scalar
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import inverse [as 别名]
def test_divide_by_scalar(self):
a, b, c, d = randomElements()
q1 = Quaternion(a, b, c, d)
for s in [30.0, 0.3, -2, -4.7]:
q2 = Quaternion(a/s, b/s, c/s, d/s)
q3 = q1
self.assertEqual(q1 / s, q2)
if q1:
self.assertEqual(s / q1, q2.inverse())
else:
with self.assertRaises(ZeroDivisionError):
s / q1
q3 /= repr(s)
self.assertEqual(q3, q2)
with self.assertRaises(ZeroDivisionError):
q4 = q1 / 0.0
with self.assertRaises(TypeError):
q4 = q1 / None
with self.assertRaises(ValueError):
q4 = q1 / 's'
示例6: ToLeftQuaternionProductMatrix
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import inverse [as 别名]
return np.array([
[0., -x[0], -x[1], -x[2]],
[x[0], 0., x[2], -x[1]],
[x[1], -x[2], 0., x[0]],
[x[2], x[1], -x[0], 0.]])
def ToLeftQuaternionProductMatrix(x):
return np.array([
[0., -x[0], -x[1], -x[2]],
[x[0], 0., -x[2], x[1]],
[x[1], x[2], 0., -x[0]],
[x[2], -x[1], x[0], 0.]])
if __name__ == "__main__":
q = Quaternion(1.,0.,0.,0.)
print q.inverse()
print q.toAxisAngle()
q2 = Quaternion(1.,.01,0.,0.)
q2.normalize()
print q2
print q2.inverse()
print q2.inverse().dot(q2)
print q2.dot(q2.inverse())
print q.dot(q2)
print q.angleTo(q2)
raw_input()
q2 = Quaternion(1.,1.,0.,0.)
q2.fromAxisAngle(np.pi/2.0,np.array([0.,1.,1.]))
q3 = q.slerp(q2,0.5)