本文整理汇总了Python中quaternion.Quaternion.getK方法的典型用法代码示例。如果您正苦于以下问题:Python Quaternion.getK方法的具体用法?Python Quaternion.getK怎么用?Python Quaternion.getK使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类quaternion.Quaternion
的用法示例。
在下文中一共展示了Quaternion.getK方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: print
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import getK [as 别名]
print("j*j = {0}".format(j*j))
print("k*k = {0}".format(k*k))
print()
print("Products of components:")
print("o*i = {0}\ti*o = {1}".format(o*i, i*o))
print("o*j = {0}\tj*o = {1}".format(o*j, j*o))
print("o*k = {0}\tk*o = {1}".format(o*k, k*o))
print("i*j = {0}\tj*i = {1}".format(i*j, j*i))
print("i*k = {0}\tk*i = {1}".format(i*k, k*i))
print("j*k = {0}\tk*j = {1}".format(j*k, k*j))
print()
p = Quaternion(i)
p.setScalar(-3).setJ(2).setK(-1)
print("p=({0}, {1}, {2}, {3})".format(p.getScalar(), p.getI(), p.getJ(), p.getK()))
# sqrt(15) = 3.87298
print("||p|| = {0} (correct: 3.87298)".format(p.norm()))
q = p.reciprocal()
qc = "-0.2-0.0666666666667i-0.133333333333j+0.0666666666667k"
print("p**(-1) = {0}\n(correct: {1})".format(q, qc))
print("p*p**(-1) = {0}".format(p*q))
print("p**(-1)*p = {0}".format(q*p))
print()
q = Quaternion(1, -2, 3, -4)
print("q = {0}".format(q))
print("p+q = {0}".format(p+q))
print("p-q = {0}".format(p-q))
示例2: ratoation
# 需要导入模块: from quaternion import Quaternion [as 别名]
# 或者: from quaternion.Quaternion import getK [as 别名]
class Rotation:
"""
3D rotation around an axis, based on quaternion arithmetics.
For the mathematical background about quaternion based rotation, see
http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
"""
# Private internal instance members:
# __r - a vector representing the axis of ratoation (Point3D)
# __theta - angle of rotation (in radians)
# __q - roatation quaternion
def __init__(self, rx=0.0, ry=0.0, rz=0.0, angle=0.0):
"""
A "constructor" that initializes an object.__class__
Input:
- rx - x - component of the vector (default: 0)
- ry - y - component of the vector (default: 0)
- rz - z - component of the vector (default: 0)
- angle - angle of rotation in radians (default: 0)
'rx' may also be an instance of a Point3D. In this case, ry and rz
are ignored and rx's components are copied into this object.
Note that the vector will automatically be converted into a unit vector.
A RotationException is raised if input arguments are of invalid types.
"""
if not InstanceCheck.isFloat(angle):
raise RotationException("Angle must be a float value")
self.__theta = angle
self.setAxis(rx, ry, rz)
def setAxis(self, rx=0.0, ry=0.0, rz=0.0):
"""
Enters a new vector of the rotation. Rotation angle remains unmodified.
Input:
- rx - x - component of the vector (default: 0)
- ry - y - component of the vector (default: 0)
- rz - z - component of the vector (default: 0)
'rx' may also be an instance of a Point3D. In this case, ry and rz
are ignored and rx's components are copied into this object.
Note that the vector will automatically be converted into a unit vector.
A RotationException is raised if input arguments are of invalid types.
"""
try:
self.__r = Point3D(rx, ry, rz)
except PointException:
raise RotationException("Invalid input argument")
self.__update()
def setAngle(self, angle=0.0):
"""
Sets a new angle of rotation.
Rotation vector's components remain unmodified.
Input:
- angle - angle of rotation in radians (default: 0)
A RotationException is raised if 'angle' is not a float or integer value.
"""
if not InstanceCheck.isFloat(angle):
raise RotationException("Angle must be float value")
self.__theta = angle
self.__update()
def __update(self):
# A private method, called after any rotation component (vector or angle)
# is modified. It normalizes the vector (its length must be 1),
# updates self.__r and recalculates the rotation quaternion (self.__q).
#
# A RotationException is raised if any quaternion operation fails.
try:
# copy vector's components into the quaternion and normalize it:
self.__q = Quaternion(0.0, self.__r.x, self.__r.y, self.__r.z).unit()
# update __r to a unit vector
self.__r.x = self.__q.getI()
self.__r.y = self.__q.getJ()
self.__r.z = self.__q.getK()
# Calculate the rotation quaternion, depending on rot. vector and angle:
# For more info, see::
# http://en.wikipedia.org/wiki/Quaternions_and_spatial_rotation
self.__q *= math.sin(0.5 * self.__theta)
self.__q += math.cos(0.5 * self.__theta)
except QuaternionException as qex:
raise RotationException("Could not generate a rotation quaternion: '{0}'".format(qex))
def getAxis(self, factor=1.0):
#.........这里部分代码省略.........