本文整理汇总了C++中MachineBasicBlock::size方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::size方法的具体用法?C++ MachineBasicBlock::size怎么用?C++ MachineBasicBlock::size使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MachineBasicBlock
的用法示例。
在下文中一共展示了MachineBasicBlock::size方法的13个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: disassemble
MachineFunction* Disassembler::disassemble(unsigned Address) {
MachineFunction *MF = getOrCreateFunction(Address);
if (MF->size() == 0) {
// Decode basic blocks until end of function
unsigned Size = 0;
MachineBasicBlock *MBB;
do {
unsigned MBBSize = 0;
MBB = decodeBasicBlock(Address+Size, MF, MBBSize);
Size += MBBSize;
} while (Address+Size < CurSectionEnd && MBB->size() > 0
&& !(MBB->instr_rbegin()->isReturn()));
if (Address+Size < CurSectionEnd && MBB->size() > 0) {
// FIXME: This can be shoved into the loop above to improve performance
MachineFunction *NextMF =
getNearestFunction(getDebugOffset(MBB->instr_rbegin()->getDebugLoc()));
if (NextMF != NULL) {
Functions.erase(
getDebugOffset(NextMF->begin()->instr_begin()->getDebugLoc()));
}
}
}
Functions[Address] = MF;
return MF;
}
示例2: convert
void MIRPrinter::convert(ModuleSlotTracker &MST,
yaml::MachineBasicBlock &YamlMBB,
const MachineBasicBlock &MBB) {
assert(MBB.getNumber() >= 0 && "Invalid MBB number");
YamlMBB.ID = (unsigned)MBB.getNumber();
// TODO: Serialize unnamed BB references.
if (const auto *BB = MBB.getBasicBlock())
YamlMBB.Name.Value = BB->hasName() ? BB->getName() : "<unnamed bb>";
else
YamlMBB.Name.Value = "";
YamlMBB.Alignment = MBB.getAlignment();
YamlMBB.AddressTaken = MBB.hasAddressTaken();
YamlMBB.IsLandingPad = MBB.isLandingPad();
for (const auto *SuccMBB : MBB.successors()) {
std::string Str;
raw_string_ostream StrOS(Str);
MIPrinter(StrOS, MST, RegisterMaskIds).printMBBReference(*SuccMBB);
YamlMBB.Successors.push_back(StrOS.str());
}
// Print the machine instructions.
YamlMBB.Instructions.reserve(MBB.size());
std::string Str;
for (const auto &MI : MBB) {
raw_string_ostream StrOS(Str);
MIPrinter(StrOS, MST, RegisterMaskIds).print(MI);
YamlMBB.Instructions.push_back(StrOS.str());
Str.clear();
}
}
示例3: decodeBasicBlock
MachineBasicBlock* Disassembler::decodeBasicBlock(unsigned Address,
MachineFunction* MF, unsigned &Size) {
assert(MF && "Unable to decode basic block without Machine Function!");
uint64_t MFLoc = MF->getFunctionNumber(); // FIXME: Horrible, horrible hack
uint64_t Off = Address-MFLoc;
std::stringstream MBBName;
MBBName << MF->getName().str() << "+" << Off;
// Dummy holds the name.
BasicBlock *Dummy = BasicBlock::Create(*MC->getContext(), MBBName.str());
MachineBasicBlock *MBB = MF->CreateMachineBasicBlock(Dummy);
MF->push_back(MBB);
// NOTE: Might also need SectAddr...
Size = 0;
while (Address+Size < (unsigned) CurSectionEnd) {
unsigned CurAddr = Address+Size;
Size += std::max(unsigned(1), decodeInstruction(CurAddr, MBB));
MachineInstr* MI = NULL;
if (MBB->size() != 0) {
MI = &(*MBB->instr_rbegin());
MachineInstructions[CurAddr] = MI;
}
if (MI != NULL && MI->isTerminator()) {
break;
}
}
if (Address >= CurSectionEnd) {
printInfo("Reached end of current section!");
}
return MBB;
}
示例4: runOnMachineFunction
/// runOnMachineFunction - Loop over all of the basic blocks, inserting
/// NOOP instructions before early exits.
bool PadShortFunc::runOnMachineFunction(MachineFunction &MF) {
const AttributeSet &FnAttrs = MF.getFunction()->getAttributes();
if (FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::OptimizeForSize) ||
FnAttrs.hasAttribute(AttributeSet::FunctionIndex,
Attribute::MinSize)) {
return false;
}
TM = &MF.getTarget();
if (!TM->getSubtarget<X86Subtarget>().padShortFunctions())
return false;
TII = TM->getInstrInfo();
// Search through basic blocks and mark the ones that have early returns
ReturnBBs.clear();
VisitedBBs.clear();
findReturns(MF.begin());
bool MadeChange = false;
MachineBasicBlock *MBB;
unsigned int Cycles = 0;
// Pad the identified basic blocks with NOOPs
for (DenseMap<MachineBasicBlock*, unsigned int>::iterator I = ReturnBBs.begin();
I != ReturnBBs.end(); ++I) {
MBB = I->first;
Cycles = I->second;
if (Cycles < Threshold) {
// BB ends in a return. Skip over any DBG_VALUE instructions
// trailing the terminator.
assert(MBB->size() > 0 &&
"Basic block should contain at least a RET but is empty");
MachineBasicBlock::iterator ReturnLoc = --MBB->end();
while (ReturnLoc->isDebugValue())
--ReturnLoc;
assert(ReturnLoc->isReturn() && !ReturnLoc->isCall() &&
"Basic block does not end with RET");
addPadding(MBB, ReturnLoc, Threshold - Cycles);
NumBBsPadded++;
MadeChange = true;
}
}
return MadeChange;
}
示例5: convert
void MIRPrinter::convert(ModuleSlotTracker &MST,
yaml::MachineBasicBlock &YamlMBB,
const MachineBasicBlock &MBB) {
assert(MBB.getNumber() >= 0 && "Invalid MBB number");
YamlMBB.ID = (unsigned)MBB.getNumber();
if (const auto *BB = MBB.getBasicBlock()) {
if (BB->hasName()) {
YamlMBB.Name.Value = BB->getName();
} else {
int Slot = MST.getLocalSlot(BB);
if (Slot == -1)
YamlMBB.IRBlock.Value = "<badref>";
else
YamlMBB.IRBlock.Value = (Twine("%ir-block.") + Twine(Slot)).str();
}
}
YamlMBB.Alignment = MBB.getAlignment();
YamlMBB.AddressTaken = MBB.hasAddressTaken();
YamlMBB.IsLandingPad = MBB.isLandingPad();
for (const auto *SuccMBB : MBB.successors()) {
std::string Str;
raw_string_ostream StrOS(Str);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printMBBReference(*SuccMBB);
YamlMBB.Successors.push_back(StrOS.str());
}
if (MBB.hasSuccessorWeights()) {
for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I)
YamlMBB.SuccessorWeights.push_back(
yaml::UnsignedValue(MBB.getSuccWeight(I)));
}
// Print the live in registers.
const auto *TRI = MBB.getParent()->getSubtarget().getRegisterInfo();
assert(TRI && "Expected target register info");
for (auto I = MBB.livein_begin(), E = MBB.livein_end(); I != E; ++I) {
std::string Str;
raw_string_ostream StrOS(Str);
printReg(*I, StrOS, TRI);
YamlMBB.LiveIns.push_back(StrOS.str());
}
// Print the machine instructions.
YamlMBB.Instructions.reserve(MBB.size());
std::string Str;
for (const auto &MI : MBB) {
raw_string_ostream StrOS(Str);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping).print(MI);
YamlMBB.Instructions.push_back(StrOS.str());
Str.clear();
}
}
示例6: convert
void MIRPrinter::convert(yaml::MachineBasicBlock &YamlMBB,
const MachineBasicBlock &MBB) {
// TODO: Serialize unnamed BB references.
if (const auto *BB = MBB.getBasicBlock())
YamlMBB.Name = BB->hasName() ? BB->getName() : "<unnamed bb>";
else
YamlMBB.Name = "";
YamlMBB.Alignment = MBB.getAlignment();
YamlMBB.AddressTaken = MBB.hasAddressTaken();
YamlMBB.IsLandingPad = MBB.isLandingPad();
// Print the machine instructions.
YamlMBB.Instructions.reserve(MBB.size());
std::string Str;
for (const auto &MI : MBB) {
raw_string_ostream StrOS(Str);
MIPrinter(StrOS).print(MI);
YamlMBB.Instructions.push_back(StrOS.str());
Str.clear();
}
}
示例7: EmitBasicBlockEnd
void MipsAsmPrinter::EmitBasicBlockEnd(const MachineBasicBlock &MBB) {
MipsTargetStreamer &TS = getTargetStreamer();
if (MBB.size() == 0)
TS.emitDirectiveInsn();
}
示例8: TailDuplicateBlocks
/// TailDuplicateBlocks - Look for small blocks that are unconditionally
/// branched to and do not fall through. Tail-duplicate their instructions
/// into their predecessors to eliminate (dynamic) branches.
bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) {
bool MadeChange = false;
if (PreRegAlloc && TailDupVerify) {
DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
VerifyPHIs(MF, true);
}
SmallVector<MachineInstr*, 8> NewPHIs;
MachineSSAUpdater SSAUpdate(MF, &NewPHIs);
for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
MachineBasicBlock *MBB = I++;
if (NumTails == TailDupLimit)
break;
// Save the successors list.
SmallSetVector<MachineBasicBlock*, 8> Succs(MBB->succ_begin(),
MBB->succ_end());
SmallVector<MachineBasicBlock*, 8> TDBBs;
SmallVector<MachineInstr*, 16> Copies;
if (TailDuplicate(MBB, MF, TDBBs, Copies)) {
++NumTails;
// TailBB's immediate successors are now successors of those predecessors
// which duplicated TailBB. Add the predecessors as sources to the PHI
// instructions.
bool isDead = MBB->pred_empty();
if (PreRegAlloc)
UpdateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
// If it is dead, remove it.
if (isDead) {
NumInstrDups -= MBB->size();
RemoveDeadBlock(MBB);
++NumDeadBlocks;
}
// Update SSA form.
if (!SSAUpdateVRs.empty()) {
for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
unsigned VReg = SSAUpdateVRs[i];
SSAUpdate.Initialize(VReg);
// If the original definition is still around, add it as an available
// value.
MachineInstr *DefMI = MRI->getVRegDef(VReg);
MachineBasicBlock *DefBB = 0;
if (DefMI) {
DefBB = DefMI->getParent();
SSAUpdate.AddAvailableValue(DefBB, VReg);
}
// Add the new vregs as available values.
DenseMap<unsigned, AvailableValsTy>::iterator LI =
SSAUpdateVals.find(VReg);
for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
MachineBasicBlock *SrcBB = LI->second[j].first;
unsigned SrcReg = LI->second[j].second;
SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
}
// Rewrite uses that are outside of the original def's block.
MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
while (UI != MRI->use_end()) {
MachineOperand &UseMO = UI.getOperand();
MachineInstr *UseMI = &*UI;
++UI;
if (UseMI->isDebugValue()) {
// SSAUpdate can replace the use with an undef. That creates
// a debug instruction that is a kill.
// FIXME: Should it SSAUpdate job to delete debug instructions
// instead of replacing the use with undef?
UseMI->eraseFromParent();
continue;
}
if (UseMI->getParent() == DefBB && !UseMI->isPHI())
continue;
SSAUpdate.RewriteUse(UseMO);
}
}
SSAUpdateVRs.clear();
SSAUpdateVals.clear();
}
// Eliminate some of the copies inserted by tail duplication to maintain
// SSA form.
for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
MachineInstr *Copy = Copies[i];
if (!Copy->isCopy())
continue;
unsigned Dst = Copy->getOperand(0).getReg();
unsigned Src = Copy->getOperand(1).getReg();
MachineRegisterInfo::use_iterator UI = MRI->use_begin(Src);
//.........这里部分代码省略.........
示例9: expandToLongBranch
//.........这里部分代码省略.........
// In NaCl, modifying the sp is not allowed in branch delay slot.
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
.addReg(Mips::SP).addImm(8);
MIBundleBuilder(*BalTgtMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::JR)).addReg(Mips::AT))
.append(BuildMI(*MF, DL, TII->get(Mips::NOP)));
// Bundle-align the target of indirect branch JR.
TgtMBB->setAlignment(MIPS_NACL_BUNDLE_ALIGN);
}
} else {
// $longbr:
// daddiu $sp, $sp, -16
// sd $ra, 0($sp)
// daddiu $at, $zero, %hi($tgt - $baltgt)
// dsll $at, $at, 16
// bal $baltgt
// daddiu $at, $at, %lo($tgt - $baltgt)
// $baltgt:
// daddu $at, $ra, $at
// ld $ra, 0($sp)
// jr64 $at
// daddiu $sp, $sp, 16
// $fallthrough:
//
// We assume the branch is within-function, and that offset is within
// +/- 2GB. High 32 bits will therefore always be zero.
// Note that this will work even if the offset is negative, because
// of the +1 modification that's added in that case. For example, if the
// offset is -1MB (0xFFFFFFFFFFF00000), the computation for %higher is
//
// 0xFFFFFFFFFFF00000 + 0x80008000 = 0x000000007FF08000
//
// and the bits [47:32] are zero. For %highest
//
// 0xFFFFFFFFFFF00000 + 0x800080008000 = 0x000080007FF08000
//
// and the bits [63:48] are zero.
Pos = LongBrMBB->begin();
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
.addReg(Mips::SP_64).addImm(-16);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD)).addReg(Mips::RA_64)
.addReg(Mips::SP_64).addImm(0);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LONG_BRANCH_DADDiu),
Mips::AT_64).addReg(Mips::ZERO_64)
.addMBB(TgtMBB, MipsII::MO_ABS_HI).addMBB(BalTgtMBB);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
.addReg(Mips::AT_64).addImm(16);
MIBundleBuilder(*LongBrMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(BalOp)).addMBB(BalTgtMBB))
.append(
BuildMI(*MF, DL, TII->get(Mips::LONG_BRANCH_DADDiu), Mips::AT_64)
.addReg(Mips::AT_64)
.addMBB(TgtMBB, MipsII::MO_ABS_LO)
.addMBB(BalTgtMBB));
Pos = BalTgtMBB->begin();
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64)
.addReg(Mips::RA_64).addReg(Mips::AT_64);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64)
.addReg(Mips::SP_64).addImm(0);
MIBundleBuilder(*BalTgtMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::JR64)).addReg(Mips::AT_64))
.append(BuildMI(*MF, DL, TII->get(Mips::DADDiu), Mips::SP_64)
.addReg(Mips::SP_64).addImm(16));
}
assert(LongBrMBB->size() + BalTgtMBB->size() == LongBranchSeqSize);
} else {
// $longbr:
// j $tgt
// nop
// $fallthrough:
//
Pos = LongBrMBB->begin();
LongBrMBB->addSuccessor(TgtMBB);
MIBundleBuilder(*LongBrMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::J)).addMBB(TgtMBB))
.append(BuildMI(*MF, DL, TII->get(Mips::NOP)));
assert(LongBrMBB->size() == LongBranchSeqSize);
}
if (I.Br->isUnconditionalBranch()) {
// Change branch destination.
assert(I.Br->getDesc().getNumOperands() == 1);
I.Br->RemoveOperand(0);
I.Br->addOperand(MachineOperand::CreateMBB(LongBrMBB));
} else
// Change branch destination and reverse condition.
replaceBranch(*MBB, I.Br, DL, &*FallThroughMBB);
}
示例10: assert
unsigned
SPUInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 2 || Cond.size() == 0) &&
"SPU branch conditions have two components!");
MachineInstrBuilder MIB;
//TODO: make a more accurate algorithm.
bool haveHBR = MBB.size()>8;
removeHBR(MBB);
MCSymbol *branchLabel = MBB.getParent()->getContext().CreateTempSymbol();
// Add a label just before the branch
if (haveHBR)
MIB = BuildMI(&MBB, DL, get(SPU::HBR_LABEL)).addSym(branchLabel);
// One-way branch.
if (FBB == 0) {
if (Cond.empty()) {
// Unconditional branch
MIB = BuildMI(&MBB, DL, get(SPU::BR));
MIB.addMBB(TBB);
DEBUG(errs() << "Inserted one-way uncond branch: ");
DEBUG((*MIB).dump());
// basic blocks have just one branch so it is safe to add the hint a its
if (haveHBR) {
MIB = BuildMI( MBB, findHBRPosition(MBB), DL, get(SPU::HBRA));
MIB.addSym(branchLabel);
MIB.addMBB(TBB);
}
} else {
// Conditional branch
MIB = BuildMI(&MBB, DL, get(Cond[0].getImm()));
MIB.addReg(Cond[1].getReg()).addMBB(TBB);
if (haveHBR) {
MIB = BuildMI(MBB, findHBRPosition(MBB), DL, get(SPU::HBRA));
MIB.addSym(branchLabel);
MIB.addMBB(TBB);
}
DEBUG(errs() << "Inserted one-way cond branch: ");
DEBUG((*MIB).dump());
}
return 1;
} else {
MIB = BuildMI(&MBB, DL, get(Cond[0].getImm()));
MachineInstrBuilder MIB2 = BuildMI(&MBB, DL, get(SPU::BR));
// Two-way Conditional Branch.
MIB.addReg(Cond[1].getReg()).addMBB(TBB);
MIB2.addMBB(FBB);
if (haveHBR) {
MIB = BuildMI( MBB, findHBRPosition(MBB), DL, get(SPU::HBRA));
MIB.addSym(branchLabel);
MIB.addMBB(FBB);
}
DEBUG(errs() << "Inserted conditional branch: ");
DEBUG((*MIB).dump());
DEBUG(errs() << "part 2: ");
DEBUG((*MIB2).dump());
return 2;
}
}
示例11: expandToLongBranch
//.........这里部分代码省略.........
if (ABI != MipsSubtarget::N64) {
// $longbr:
// addiu $sp, $sp, -8
// sw $ra, 0($sp)
// bal $baltgt
// lui $at, %hi($tgt - $baltgt)
// $baltgt:
// addiu $at, $at, %lo($tgt - $baltgt)
// addu $at, $ra, $at
// lw $ra, 0($sp)
// jr $at
// addiu $sp, $sp, 8
// $fallthrough:
//
Pos = LongBrMBB->begin();
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::SP)
.addReg(Mips::SP).addImm(-8);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SW)).addReg(Mips::RA)
.addReg(Mips::SP).addImm(0);
MIBundleBuilder(*LongBrMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::BAL_BR)).addMBB(BalTgtMBB))
.append(BuildMI(*MF, DL, TII->get(Mips::LUi), Mips::AT).addImm(Hi));
Pos = BalTgtMBB->begin();
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDiu), Mips::AT)
.addReg(Mips::AT).addImm(Lo);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::ADDu), Mips::AT)
.addReg(Mips::RA).addReg(Mips::AT);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LW), Mips::RA)
.addReg(Mips::SP).addImm(0);
MIBundleBuilder(*BalTgtMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::JR)).addReg(Mips::AT))
.append(BuildMI(*MF, DL, TII->get(Mips::ADDiu), Mips::SP)
.addReg(Mips::SP).addImm(8));
} else {
// $longbr:
// daddiu $sp, $sp, -16
// sd $ra, 0($sp)
// lui64 $at, %highest($tgt - $baltgt)
// daddiu $at, $at, %higher($tgt - $baltgt)
// dsll $at, $at, 16
// daddiu $at, $at, %hi($tgt - $baltgt)
// bal $baltgt
// dsll $at, $at, 16
// $baltgt:
// daddiu $at, $at, %lo($tgt - $baltgt)
// daddu $at, $ra, $at
// ld $ra, 0($sp)
// jr64 $at
// daddiu $sp, $sp, 16
// $fallthrough:
//
int64_t Higher = SignExtend64<16>(((Offset + 0x80008000) >> 32) & 0xffff);
int64_t Highest =
SignExtend64<16>(((Offset + 0x800080008000LL) >> 48) & 0xffff);
Pos = LongBrMBB->begin();
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::SP_64)
.addReg(Mips::SP_64).addImm(-16);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::SD)).addReg(Mips::RA_64)
.addReg(Mips::SP_64).addImm(0);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::LUi64), Mips::AT_64)
.addImm(Highest);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::AT_64)
.addReg(Mips::AT_64).addImm(Higher);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DSLL), Mips::AT_64)
.addReg(Mips::AT_64).addImm(16);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::AT_64)
.addReg(Mips::AT_64).addImm(Hi);
MIBundleBuilder(*LongBrMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::BAL_BR)).addMBB(BalTgtMBB))
.append(BuildMI(*MF, DL, TII->get(Mips::DSLL), Mips::AT_64)
.addReg(Mips::AT_64).addImm(16));
Pos = BalTgtMBB->begin();
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDiu), Mips::AT_64)
.addReg(Mips::AT_64).addImm(Lo);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::DADDu), Mips::AT_64)
.addReg(Mips::RA_64).addReg(Mips::AT_64);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Mips::LD), Mips::RA_64)
.addReg(Mips::SP_64).addImm(0);
MIBundleBuilder(*BalTgtMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Mips::JR64)).addReg(Mips::AT_64))
.append(BuildMI(*MF, DL, TII->get(Mips::DADDiu), Mips::SP_64)
.addReg(Mips::SP_64).addImm(16));
}
assert(BalTgtMBBSize == BalTgtMBB->size());
assert(LongBrMBB->size() + BalTgtMBBSize == LongBranchSeqSize);
} else {
示例12: DEBUG
bool PTXInstrInfo::
AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// TODO implement cases when AllowModify is true
if (MBB.empty())
return true;
MachineBasicBlock::const_iterator iter = MBB.end();
const MachineInstr& instLast1 = *--iter;
const MCInstrDesc &desc1 = instLast1.getDesc();
// for special case that MBB has only 1 instruction
const bool IsSizeOne = MBB.size() == 1;
// if IsSizeOne is true, *--iter and instLast2 are invalid
// we put a dummy value in instLast2 and desc2 since they are used
const MachineInstr& instLast2 = IsSizeOne ? instLast1 : *--iter;
const MCInstrDesc &desc2 = IsSizeOne ? desc1 : instLast2.getDesc();
DEBUG(dbgs() << "\n");
DEBUG(dbgs() << "AnalyzeBranch: opcode: " << instLast1.getOpcode() << "\n");
DEBUG(dbgs() << "AnalyzeBranch: MBB: " << MBB.getName().str() << "\n");
DEBUG(dbgs() << "AnalyzeBranch: TBB: " << TBB << "\n");
DEBUG(dbgs() << "AnalyzeBranch: FBB: " << FBB << "\n");
// this block ends with no branches
if (!IsAnyKindOfBranch(instLast1)) {
DEBUG(dbgs() << "AnalyzeBranch: ends with no branch\n");
return false;
}
// this block ends with only an unconditional branch
if (desc1.isUnconditionalBranch() &&
// when IsSizeOne is true, it "absorbs" the evaluation of instLast2
(IsSizeOne || !IsAnyKindOfBranch(instLast2))) {
DEBUG(dbgs() << "AnalyzeBranch: ends with only uncond branch\n");
TBB = GetBranchTarget(instLast1);
return false;
}
// this block ends with a conditional branch and
// it falls through to a successor block
if (desc1.isConditionalBranch() &&
IsAnySuccessorAlsoLayoutSuccessor(MBB)) {
DEBUG(dbgs() << "AnalyzeBranch: ends with cond branch and fall through\n");
TBB = GetBranchTarget(instLast1);
int i = instLast1.findFirstPredOperandIdx();
Cond.push_back(instLast1.getOperand(i));
Cond.push_back(instLast1.getOperand(i+1));
return false;
}
// when IsSizeOne is true, we are done
if (IsSizeOne)
return true;
// this block ends with a conditional branch
// followed by an unconditional branch
if (desc2.isConditionalBranch() &&
desc1.isUnconditionalBranch()) {
DEBUG(dbgs() << "AnalyzeBranch: ends with cond and uncond branch\n");
TBB = GetBranchTarget(instLast2);
FBB = GetBranchTarget(instLast1);
int i = instLast2.findFirstPredOperandIdx();
Cond.push_back(instLast2.getOperand(i));
Cond.push_back(instLast2.getOperand(i+1));
return false;
}
// branch cannot be understood
DEBUG(dbgs() << "AnalyzeBranch: cannot be understood\n");
return true;
}
示例13: getTargetMBB
// Expand branch instructions to long branches.
// TODO: This function has to be fixed for beqz16 and bnez16, because it
// currently assumes that all branches have 16-bit offsets, and will produce
// wrong code if branches whose allowed offsets are [-128, -126, ..., 126]
// are present.
void Cpu0LongBranch::expandToLongBranch(MBBInfo &I) {
MachineBasicBlock::iterator Pos;
MachineBasicBlock *MBB = I.Br->getParent(), *TgtMBB = getTargetMBB(*I.Br);
DebugLoc DL = I.Br->getDebugLoc();
const BasicBlock *BB = MBB->getBasicBlock();
MachineFunction::iterator FallThroughMBB = ++MachineFunction::iterator(MBB);
MachineBasicBlock *LongBrMBB = MF->CreateMachineBasicBlock(BB);
const Cpu0Subtarget &Subtarget =
static_cast<const Cpu0Subtarget &>(MF->getSubtarget());
const Cpu0InstrInfo *TII =
static_cast<const Cpu0InstrInfo *>(Subtarget.getInstrInfo());
MF->insert(FallThroughMBB, LongBrMBB);
MBB->replaceSuccessor(TgtMBB, LongBrMBB);
if (IsPIC) {
MachineBasicBlock *BalTgtMBB = MF->CreateMachineBasicBlock(BB);
MF->insert(FallThroughMBB, BalTgtMBB);
LongBrMBB->addSuccessor(BalTgtMBB);
BalTgtMBB->addSuccessor(TgtMBB);
unsigned BalOp = Cpu0::BAL;
// $longbr:
// addiu $sp, $sp, -8
// st $lr, 0($sp)
// lui $at, %hi($tgt - $baltgt)
// addiu $lr, $lr, %lo($tgt - $baltgt)
// bal $baltgt
// nop
// $baltgt:
// addu $at, $lr, $at
// addiu $sp, $sp, 8
// ld $lr, 0($sp)
// jr $at
// nop
// $fallthrough:
//
Pos = LongBrMBB->begin();
BuildMI(*LongBrMBB, Pos, DL, TII->get(Cpu0::ADDiu), Cpu0::SP)
.addReg(Cpu0::SP).addImm(-8);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Cpu0::ST)).addReg(Cpu0::LR)
.addReg(Cpu0::SP).addImm(0);
// LUi and ADDiu instructions create 32-bit offset of the target basic
// block from the target of BAL instruction. We cannot use immediate
// value for this offset because it cannot be determined accurately when
// the program has inline assembly statements. We therefore use the
// relocation expressions %hi($tgt-$baltgt) and %lo($tgt-$baltgt) which
// are resolved during the fixup, so the values will always be correct.
//
// Since we cannot create %hi($tgt-$baltgt) and %lo($tgt-$baltgt)
// expressions at this point (it is possible only at the MC layer),
// we replace LUi and ADDiu with pseudo instructions
// LONG_BRANCH_LUi and LONG_BRANCH_ADDiu, and add both basic
// blocks as operands to these instructions. When lowering these pseudo
// instructions to LUi and ADDiu in the MC layer, we will create
// %hi($tgt-$baltgt) and %lo($tgt-$baltgt) expressions and add them as
// operands to lowered instructions.
BuildMI(*LongBrMBB, Pos, DL, TII->get(Cpu0::LONG_BRANCH_LUi), Cpu0::AT)
.addMBB(TgtMBB).addMBB(BalTgtMBB);
BuildMI(*LongBrMBB, Pos, DL, TII->get(Cpu0::LONG_BRANCH_ADDiu), Cpu0::AT)
.addReg(Cpu0::AT).addMBB(TgtMBB).addMBB(BalTgtMBB);
MIBundleBuilder(*LongBrMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(BalOp)).addMBB(BalTgtMBB));
Pos = BalTgtMBB->begin();
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Cpu0::ADDu), Cpu0::AT)
.addReg(Cpu0::LR).addReg(Cpu0::AT);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Cpu0::LD), Cpu0::LR)
.addReg(Cpu0::SP).addImm(0);
BuildMI(*BalTgtMBB, Pos, DL, TII->get(Cpu0::ADDiu), Cpu0::SP)
.addReg(Cpu0::SP).addImm(8);
MIBundleBuilder(*BalTgtMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Cpu0::JR)).addReg(Cpu0::AT))
.append(BuildMI(*MF, DL, TII->get(Cpu0::NOP)));
assert(LongBrMBB->size() + BalTgtMBB->size() == LongBranchSeqSize);
} else {
// $longbr:
// jmp $tgt
// nop
// $fallthrough:
//
Pos = LongBrMBB->begin();
LongBrMBB->addSuccessor(TgtMBB);
MIBundleBuilder(*LongBrMBB, Pos)
.append(BuildMI(*MF, DL, TII->get(Cpu0::JMP)).addMBB(TgtMBB))
.append(BuildMI(*MF, DL, TII->get(Cpu0::NOP)));
//.........这里部分代码省略.........