当前位置: 首页>>代码示例>>C++>>正文


C++ MachineBasicBlock::canFallThrough方法代码示例

本文整理汇总了C++中MachineBasicBlock::canFallThrough方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::canFallThrough方法的具体用法?C++ MachineBasicBlock::canFallThrough怎么用?C++ MachineBasicBlock::canFallThrough使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MachineBasicBlock的用法示例。


在下文中一共展示了MachineBasicBlock::canFallThrough方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: DEBUG

/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
                                 SmallVector<MachineBasicBlock*, 8> &TDBBs,
                                 SmallVector<MachineInstr*, 16> &Copies) {
  if (!shouldTailDuplicate(MF, *TailBB))
    return false;

  DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');

  // Iterate through all the unique predecessors and tail-duplicate this
  // block into them, if possible. Copying the list ahead of time also
  // avoids trouble with the predecessor list reallocating.
  bool Changed = false;
  SmallSetVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
                                              TailBB->pred_end());
  DenseSet<unsigned> UsedByPhi;
  getRegsUsedByPHIs(*TailBB, &UsedByPhi);
  for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
       PE = Preds.end(); PI != PE; ++PI) {
    MachineBasicBlock *PredBB = *PI;

    assert(TailBB != PredBB &&
           "Single-block loop should have been rejected earlier!");
    // EH edges are ignored by AnalyzeBranch.
    if (PredBB->succ_size() > 1)
      continue;

    MachineBasicBlock *PredTBB, *PredFBB;
    SmallVector<MachineOperand, 4> PredCond;
    if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
      continue;
    if (!PredCond.empty())
      continue;
    // Don't duplicate into a fall-through predecessor (at least for now).
    if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
      continue;

    DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
                 << "From Succ: " << *TailBB);

    TDBBs.push_back(PredBB);

    // Remove PredBB's unconditional branch.
    TII->RemoveBranch(*PredBB);

    // Clone the contents of TailBB into PredBB.
    DenseMap<unsigned, unsigned> LocalVRMap;
    SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
    MachineBasicBlock::iterator I = TailBB->begin();
    while (I != TailBB->end()) {
      MachineInstr *MI = &*I;
      ++I;
      if (MI->isPHI()) {
        // Replace the uses of the def of the PHI with the register coming
        // from PredBB.
        ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
      } else {
        // Replace def of virtual registers with new registers, and update
        // uses with PHI source register or the new registers.
        DuplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi);
      }
    }
    MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
    for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
      Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
                               TII->get(TargetOpcode::COPY),
                               CopyInfos[i].first).addReg(CopyInfos[i].second));
    }

    // Simplify
    TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);

    NumInstrDups += TailBB->size() - 1; // subtract one for removed branch

    // Update the CFG.
    PredBB->removeSuccessor(PredBB->succ_begin());
    assert(PredBB->succ_empty() &&
           "TailDuplicate called on block with multiple successors!");
    for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
           E = TailBB->succ_end(); I != E; ++I)
      PredBB->addSuccessor(*I);

    Changed = true;
    ++NumTailDups;
  }

  // If TailBB was duplicated into all its predecessors except for the prior
  // block, which falls through unconditionally, move the contents of this
  // block into the prior block.
  MachineBasicBlock *PrevBB = prior(MachineFunction::iterator(TailBB));
  MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
  SmallVector<MachineOperand, 4> PriorCond;
  // This has to check PrevBB->succ_size() because EH edges are ignored by
  // AnalyzeBranch.
  if (PrevBB->succ_size() == 1 && 
      !TII->AnalyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) &&
      PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 &&
      !TailBB->hasAddressTaken()) {
//.........这里部分代码省略.........
开发者ID:Sciumo,项目名称:llvm,代码行数:101,代码来源:TailDuplication.cpp

示例2:

/// shouldTailDuplicate - Determine if it is profitable to duplicate this block.
bool
TailDuplicatePass::shouldTailDuplicate(const MachineFunction &MF,
                                       MachineBasicBlock &TailBB) {
  // Only duplicate blocks that end with unconditional branches.
  if (TailBB.canFallThrough())
    return false;

  // Don't try to tail-duplicate single-block loops.
  if (TailBB.isSuccessor(&TailBB))
    return false;

  // Set the limit on the cost to duplicate. When optimizing for size,
  // duplicate only one, because one branch instruction can be eliminated to
  // compensate for the duplication.
  unsigned MaxDuplicateCount;
  if (TailDuplicateSize.getNumOccurrences() == 0 &&
      MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
    MaxDuplicateCount = 1;
  else
    MaxDuplicateCount = TailDuplicateSize;

  // If the target has hardware branch prediction that can handle indirect
  // branches, duplicating them can often make them predictable when there
  // are common paths through the code.  The limit needs to be high enough
  // to allow undoing the effects of tail merging and other optimizations
  // that rearrange the predecessors of the indirect branch.

  if (PreRegAlloc && !TailBB.empty()) {
    const TargetInstrDesc &TID = TailBB.back().getDesc();
    if (TID.isIndirectBranch())
      MaxDuplicateCount = 20;
  }

  // Check the instructions in the block to determine whether tail-duplication
  // is invalid or unlikely to be profitable.
  unsigned InstrCount = 0;
  for (MachineBasicBlock::const_iterator I = TailBB.begin(); I != TailBB.end();
       ++I) {
    // Non-duplicable things shouldn't be tail-duplicated.
    if (I->getDesc().isNotDuplicable())
      return false;

    // Do not duplicate 'return' instructions if this is a pre-regalloc run.
    // A return may expand into a lot more instructions (e.g. reload of callee
    // saved registers) after PEI.
    if (PreRegAlloc && I->getDesc().isReturn())
      return false;

    // Avoid duplicating calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (PreRegAlloc && I->getDesc().isCall())
      return false;

    if (!I->isPHI() && !I->isDebugValue())
      InstrCount += 1;

    if (InstrCount > MaxDuplicateCount)
      return false;
  }

  return true;
}
开发者ID:Sciumo,项目名称:llvm,代码行数:64,代码来源:TailDuplication.cpp

示例3: DEBUG

/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
                                 SmallVector<MachineBasicBlock*, 8> &TDBBs,
                                 SmallVector<MachineInstr*, 16> &Copies) {
    // Set the limit on the number of instructions to duplicate, with a default
    // of one less than the tail-merge threshold. When optimizing for size,
    // duplicate only one, because one branch instruction can be eliminated to
    // compensate for the duplication.
    unsigned MaxDuplicateCount;
    if (TailDuplicateSize.getNumOccurrences() == 0 &&
            MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize))
        MaxDuplicateCount = 1;
    else
        MaxDuplicateCount = TailDuplicateSize;

    if (PreRegAlloc) {
        if (TailBB->empty())
            return false;
        const TargetInstrDesc &TID = TailBB->back().getDesc();
        // Pre-regalloc tail duplication hurts compile time and doesn't help
        // much except for indirect branches and returns.
        if (!TID.isIndirectBranch() && !TID.isReturn())
            return false;
        // If the target has hardware branch prediction that can handle indirect
        // branches, duplicating them can often make them predictable when there
        // are common paths through the code.  The limit needs to be high enough
        // to allow undoing the effects of tail merging and other optimizations
        // that rearrange the predecessors of the indirect branch.
        MaxDuplicateCount = 20;
    }

    // Don't try to tail-duplicate single-block loops.
    if (TailBB->isSuccessor(TailBB))
        return false;

    // Check the instructions in the block to determine whether tail-duplication
    // is invalid or unlikely to be profitable.
    unsigned InstrCount = 0;
    bool HasCall = false;
    for (MachineBasicBlock::iterator I = TailBB->begin();
            I != TailBB->end(); ++I) {
        // Non-duplicable things shouldn't be tail-duplicated.
        if (I->getDesc().isNotDuplicable()) return false;
        // Do not duplicate 'return' instructions if this is a pre-regalloc run.
        // A return may expand into a lot more instructions (e.g. reload of callee
        // saved registers) after PEI.
        if (PreRegAlloc && I->getDesc().isReturn()) return false;
        // Don't duplicate more than the threshold.
        if (InstrCount == MaxDuplicateCount) return false;
        // Remember if we saw a call.
        if (I->getDesc().isCall()) HasCall = true;
        if (!I->isPHI() && !I->isDebugValue())
            InstrCount += 1;
    }
    // Don't tail-duplicate calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (InstrCount > 1 && (PreRegAlloc && HasCall))
        return false;

    DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');

    // Iterate through all the unique predecessors and tail-duplicate this
    // block into them, if possible. Copying the list ahead of time also
    // avoids trouble with the predecessor list reallocating.
    bool Changed = false;
    SmallSetVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
            TailBB->pred_end());
    for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
            PE = Preds.end(); PI != PE; ++PI) {
        MachineBasicBlock *PredBB = *PI;

        assert(TailBB != PredBB &&
               "Single-block loop should have been rejected earlier!");
        if (PredBB->succ_size() > 1) continue;

        MachineBasicBlock *PredTBB, *PredFBB;
        SmallVector<MachineOperand, 4> PredCond;
        if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
            continue;
        if (!PredCond.empty())
            continue;
        // EH edges are ignored by AnalyzeBranch.
        if (PredBB->succ_size() != 1)
            continue;
        // Don't duplicate into a fall-through predecessor (at least for now).
        if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
            continue;

        DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
              << "From Succ: " << *TailBB);

        TDBBs.push_back(PredBB);

        // Remove PredBB's unconditional branch.
        TII->RemoveBranch(*PredBB);

        // Clone the contents of TailBB into PredBB.
//.........这里部分代码省略.........
开发者ID:TheRyaz,项目名称:c_reading,代码行数:101,代码来源:TailDuplication.cpp

示例4: shouldTailDuplicate

/// Determine if it is profitable to duplicate this block.
bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
                                         MachineBasicBlock &TailBB) {
  // When doing tail-duplication during layout, the block ordering is in flux,
  // so canFallThrough returns a result based on incorrect information and
  // should just be ignored.
  if (!LayoutMode && TailBB.canFallThrough())
    return false;

  // Don't try to tail-duplicate single-block loops.
  if (TailBB.isSuccessor(&TailBB))
    return false;

  // Set the limit on the cost to duplicate. When optimizing for size,
  // duplicate only one, because one branch instruction can be eliminated to
  // compensate for the duplication.
  unsigned MaxDuplicateCount;
  if (TailDupSize == 0 &&
      TailDuplicateSize.getNumOccurrences() == 0 &&
      MF->getFunction()->optForSize())
    MaxDuplicateCount = 1;
  else if (TailDupSize == 0)
    MaxDuplicateCount = TailDuplicateSize;
  else
    MaxDuplicateCount = TailDupSize;

  // If the block to be duplicated ends in an unanalyzable fallthrough, don't
  // duplicate it.
  // A similar check is necessary in MachineBlockPlacement to make sure pairs of
  // blocks with unanalyzable fallthrough get layed out contiguously.
  MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
  SmallVector<MachineOperand, 4> PredCond;
  if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
      TailBB.canFallThrough())
    return false;

  // If the target has hardware branch prediction that can handle indirect
  // branches, duplicating them can often make them predictable when there
  // are common paths through the code.  The limit needs to be high enough
  // to allow undoing the effects of tail merging and other optimizations
  // that rearrange the predecessors of the indirect branch.

  bool HasIndirectbr = false;
  if (!TailBB.empty())
    HasIndirectbr = TailBB.back().isIndirectBranch();

  if (HasIndirectbr && PreRegAlloc)
    MaxDuplicateCount = TailDupIndirectBranchSize;

  // Check the instructions in the block to determine whether tail-duplication
  // is invalid or unlikely to be profitable.
  unsigned InstrCount = 0;
  for (MachineInstr &MI : TailBB) {
    // Non-duplicable things shouldn't be tail-duplicated.
    if (MI.isNotDuplicable())
      return false;

    // Convergent instructions can be duplicated only if doing so doesn't add
    // new control dependencies, which is what we're going to do here.
    if (MI.isConvergent())
      return false;

    // Do not duplicate 'return' instructions if this is a pre-regalloc run.
    // A return may expand into a lot more instructions (e.g. reload of callee
    // saved registers) after PEI.
    if (PreRegAlloc && MI.isReturn())
      return false;

    // Avoid duplicating calls before register allocation. Calls presents a
    // barrier to register allocation so duplicating them may end up increasing
    // spills.
    if (PreRegAlloc && MI.isCall())
      return false;

    if (!MI.isPHI() && !MI.isDebugValue())
      InstrCount += 1;

    if (InstrCount > MaxDuplicateCount)
      return false;
  }

  // Check if any of the successors of TailBB has a PHI node in which the
  // value corresponding to TailBB uses a subregister.
  // If a phi node uses a register paired with a subregister, the actual
  // "value type" of the phi may differ from the type of the register without
  // any subregisters. Due to a bug, tail duplication may add a new operand
  // without a necessary subregister, producing an invalid code. This is
  // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
  // Disable tail duplication for this case for now, until the problem is
  // fixed.
  for (auto SB : TailBB.successors()) {
    for (auto &I : *SB) {
      if (!I.isPHI())
        break;
      unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
      assert(Idx != 0);
      MachineOperand &PU = I.getOperand(Idx);
      if (PU.getSubReg() != 0)
        return false;
    }
//.........这里部分代码省略.........
开发者ID:CTSRD-SOAAP,项目名称:llvm,代码行数:101,代码来源:TailDuplicator.cpp

示例5: TailDuplicateBlocks

/// TailDuplicateBlocks - Look for small blocks that are unconditionally
/// branched to and do not fall through. Tail-duplicate their instructions
/// into their predecessors to eliminate (dynamic) branches.
bool TailDuplicatePass::TailDuplicateBlocks(MachineFunction &MF) {
    bool MadeChange = false;

    if (PreRegAlloc && TailDupVerify) {
        DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
        VerifyPHIs(MF, true);
    }

    SmallVector<MachineInstr*, 8> NewPHIs;
    MachineSSAUpdater SSAUpdate(MF, &NewPHIs);

    for (MachineFunction::iterator I = ++MF.begin(), E = MF.end(); I != E; ) {
        MachineBasicBlock *MBB = I++;

        if (NumTails == TailDupLimit)
            break;

        // Only duplicate blocks that end with unconditional branches.
        if (MBB->canFallThrough())
            continue;

        // Save the successors list.
        SmallSetVector<MachineBasicBlock*, 8> Succs(MBB->succ_begin(),
                MBB->succ_end());

        SmallVector<MachineBasicBlock*, 8> TDBBs;
        SmallVector<MachineInstr*, 16> Copies;
        if (TailDuplicate(MBB, MF, TDBBs, Copies)) {
            ++NumTails;

            // TailBB's immediate successors are now successors of those predecessors
            // which duplicated TailBB. Add the predecessors as sources to the PHI
            // instructions.
            bool isDead = MBB->pred_empty();
            if (PreRegAlloc)
                UpdateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);

            // If it is dead, remove it.
            if (isDead) {
                NumInstrDups -= MBB->size();
                RemoveDeadBlock(MBB);
                ++NumDeadBlocks;
            }

            // Update SSA form.
            if (!SSAUpdateVRs.empty()) {
                for (unsigned i = 0, e = SSAUpdateVRs.size(); i != e; ++i) {
                    unsigned VReg = SSAUpdateVRs[i];
                    SSAUpdate.Initialize(VReg);

                    // If the original definition is still around, add it as an available
                    // value.
                    MachineInstr *DefMI = MRI->getVRegDef(VReg);
                    MachineBasicBlock *DefBB = 0;
                    if (DefMI) {
                        DefBB = DefMI->getParent();
                        SSAUpdate.AddAvailableValue(DefBB, VReg);
                    }

                    // Add the new vregs as available values.
                    DenseMap<unsigned, AvailableValsTy>::iterator LI =
                        SSAUpdateVals.find(VReg);
                    for (unsigned j = 0, ee = LI->second.size(); j != ee; ++j) {
                        MachineBasicBlock *SrcBB = LI->second[j].first;
                        unsigned SrcReg = LI->second[j].second;
                        SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
                    }

                    // Rewrite uses that are outside of the original def's block.
                    MachineRegisterInfo::use_iterator UI = MRI->use_begin(VReg);
                    while (UI != MRI->use_end()) {
                        MachineOperand &UseMO = UI.getOperand();
                        MachineInstr *UseMI = &*UI;
                        ++UI;
                        if (UseMI->getParent() == DefBB)
                            continue;
                        SSAUpdate.RewriteUse(UseMO);
                    }
                }

                SSAUpdateVRs.clear();
                SSAUpdateVals.clear();
            }

            // Eliminate some of the copies inserted by tail duplication to maintain
            // SSA form.
            for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
                MachineInstr *Copy = Copies[i];
                if (!Copy->isCopy())
                    continue;
                unsigned Dst = Copy->getOperand(0).getReg();
                unsigned Src = Copy->getOperand(1).getReg();
                MachineRegisterInfo::use_iterator UI = MRI->use_begin(Src);
                if (++UI == MRI->use_end()) {
                    // Copy is the only use. Do trivial copy propagation here.
                    MRI->replaceRegWith(Dst, Src);
                    Copy->eraseFromParent();
//.........这里部分代码省略.........
开发者ID:TheRyaz,项目名称:c_reading,代码行数:101,代码来源:TailDuplication.cpp


注:本文中的MachineBasicBlock::canFallThrough方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。