本文整理汇总了C++中MachineBasicBlock::getFirstNonPHI方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::getFirstNonPHI方法的具体用法?C++ MachineBasicBlock::getFirstNonPHI怎么用?C++ MachineBasicBlock::getFirstNonPHI使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MachineBasicBlock
的用法示例。
在下文中一共展示了MachineBasicBlock::getFirstNonPHI方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: replacePhiEdges
void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
MachineBasicBlock *NewB) {
for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
MachineBasicBlock *SB = *I;
MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
for (P = SB->begin(); P != N; ++P) {
MachineInstr *PN = &*P;
for (MIOperands MO(PN); MO.isValid(); ++MO)
if (MO->isMBB() && MO->getMBB() == OldB)
MO->setMBB(NewB);
}
}
}
示例2: replacePhiEdges
void HexagonEarlyIfConversion::replacePhiEdges(MachineBasicBlock *OldB,
MachineBasicBlock *NewB) {
for (auto I = OldB->succ_begin(), E = OldB->succ_end(); I != E; ++I) {
MachineBasicBlock *SB = *I;
MachineBasicBlock::iterator P, N = SB->getFirstNonPHI();
for (P = SB->begin(); P != N; ++P) {
MachineInstr &PN = *P;
for (MachineOperand &MO : PN.operands())
if (MO.isMBB() && MO.getMBB() == OldB)
MO.setMBB(NewB);
}
}
}
示例3: SinkIntoLoop
/// Sink instructions into loops if profitable. This especially tries to prevent
/// register spills caused by register pressure if there is little to no
/// overhead moving instructions into loops.
void MachineLICM::SinkIntoLoop() {
MachineBasicBlock *Preheader = getCurPreheader();
if (!Preheader)
return;
SmallVector<MachineInstr *, 8> Candidates;
for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
I != Preheader->instr_end(); ++I) {
// We need to ensure that we can safely move this instruction into the loop.
// As such, it must not have side-effects, e.g. such as a call has.
if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
Candidates.push_back(&*I);
}
for (MachineInstr *I : Candidates) {
const MachineOperand &MO = I->getOperand(0);
if (!MO.isDef() || !MO.isReg() || !MO.getReg())
continue;
if (!MRI->hasOneDef(MO.getReg()))
continue;
bool CanSink = true;
MachineBasicBlock *B = nullptr;
for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
// FIXME: Come up with a proper cost model that estimates whether sinking
// the instruction (and thus possibly executing it on every loop
// iteration) is more expensive than a register.
// For now assumes that copies are cheap and thus almost always worth it.
if (!MI.isCopy()) {
CanSink = false;
break;
}
if (!B) {
B = MI.getParent();
continue;
}
B = DT->findNearestCommonDominator(B, MI.getParent());
if (!B) {
CanSink = false;
break;
}
}
if (!CanSink || !B || B == Preheader)
continue;
B->splice(B->getFirstNonPHI(), Preheader, I);
}
}
示例4: runOnMachineFunction
bool UnreachableMachineBlockElim::runOnMachineFunction(MachineFunction &F) {
df_iterator_default_set<MachineBasicBlock*> Reachable;
bool ModifiedPHI = false;
MMI = getAnalysisIfAvailable<MachineModuleInfo>();
MachineDominatorTree *MDT = getAnalysisIfAvailable<MachineDominatorTree>();
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
// Mark all reachable blocks.
for (MachineBasicBlock *BB : depth_first_ext(&F, Reachable))
(void)BB/* Mark all reachable blocks */;
// Loop over all dead blocks, remembering them and deleting all instructions
// in them.
std::vector<MachineBasicBlock*> DeadBlocks;
for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
MachineBasicBlock *BB = &*I;
// Test for deadness.
if (!Reachable.count(BB)) {
DeadBlocks.push_back(BB);
// Update dominator and loop info.
if (MLI) MLI->removeBlock(BB);
if (MDT && MDT->getNode(BB)) MDT->eraseNode(BB);
while (BB->succ_begin() != BB->succ_end()) {
MachineBasicBlock* succ = *BB->succ_begin();
MachineBasicBlock::iterator start = succ->begin();
while (start != succ->end() && start->isPHI()) {
for (unsigned i = start->getNumOperands() - 1; i >= 2; i-=2)
if (start->getOperand(i).isMBB() &&
start->getOperand(i).getMBB() == BB) {
start->RemoveOperand(i);
start->RemoveOperand(i-1);
}
start++;
}
BB->removeSuccessor(BB->succ_begin());
}
}
}
// Actually remove the blocks now.
for (unsigned i = 0, e = DeadBlocks.size(); i != e; ++i)
DeadBlocks[i]->eraseFromParent();
// Cleanup PHI nodes.
for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
MachineBasicBlock *BB = &*I;
// Prune unneeded PHI entries.
SmallPtrSet<MachineBasicBlock*, 8> preds(BB->pred_begin(),
BB->pred_end());
MachineBasicBlock::iterator phi = BB->begin();
while (phi != BB->end() && phi->isPHI()) {
for (unsigned i = phi->getNumOperands() - 1; i >= 2; i-=2)
if (!preds.count(phi->getOperand(i).getMBB())) {
phi->RemoveOperand(i);
phi->RemoveOperand(i-1);
ModifiedPHI = true;
}
if (phi->getNumOperands() == 3) {
const MachineOperand &Input = phi->getOperand(1);
const MachineOperand &Output = phi->getOperand(0);
unsigned InputReg = Input.getReg();
unsigned OutputReg = Output.getReg();
assert(Output.getSubReg() == 0 && "Cannot have output subregister");
ModifiedPHI = true;
if (InputReg != OutputReg) {
MachineRegisterInfo &MRI = F.getRegInfo();
unsigned InputSub = Input.getSubReg();
if (InputSub == 0 &&
MRI.constrainRegClass(InputReg, MRI.getRegClass(OutputReg))) {
MRI.replaceRegWith(OutputReg, InputReg);
} else {
// The input register to the PHI has a subregister or it can't be
// constrained to the proper register class:
// insert a COPY instead of simply replacing the output
// with the input.
const TargetInstrInfo *TII = F.getSubtarget().getInstrInfo();
BuildMI(*BB, BB->getFirstNonPHI(), phi->getDebugLoc(),
TII->get(TargetOpcode::COPY), OutputReg)
.addReg(InputReg, getRegState(Input), InputSub);
}
phi++->eraseFromParent();
}
continue;
}
++phi;
}
}
F.RenumberBlocks();
//.........这里部分代码省略.........
示例5: runOnMachineFunction
bool SIFixSGPRLiveRanges::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
bool MadeChange = false;
MachinePostDominatorTree *PDT = &getAnalysis<MachinePostDominatorTree>();
std::vector<std::pair<unsigned, LiveRange *>> SGPRLiveRanges;
LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
MachineBasicBlock *Entry = MF.begin();
// Use a depth first order so that in SSA, we encounter all defs before
// uses. Once the defs of the block have been found, attempt to insert
// SGPR_USE instructions in successor blocks if required.
for (MachineBasicBlock *MBB : depth_first(Entry)) {
for (const MachineInstr &MI : *MBB) {
for (const MachineOperand &MO : MI.defs()) {
if (MO.isImplicit())
continue;
unsigned Def = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Def)) {
if (TRI->isSGPRClass(MRI.getRegClass(Def))) {
// Only consider defs that are live outs. We don't care about def /
// use within the same block.
LiveRange &LR = LIS->getInterval(Def);
if (LIS->isLiveOutOfMBB(LR, MBB))
SGPRLiveRanges.push_back(std::make_pair(Def, &LR));
}
} else if (TRI->isSGPRClass(TRI->getPhysRegClass(Def))) {
SGPRLiveRanges.push_back(std::make_pair(Def, &LIS->getRegUnit(Def)));
}
}
}
if (MBB->succ_size() < 2)
continue;
// We have structured control flow, so the number of successors should be
// two.
assert(MBB->succ_size() == 2);
MachineBasicBlock *SuccA = *MBB->succ_begin();
MachineBasicBlock *SuccB = *(++MBB->succ_begin());
MachineBasicBlock *NCD = PDT->findNearestCommonDominator(SuccA, SuccB);
if (!NCD)
continue;
MachineBasicBlock::iterator NCDTerm = NCD->getFirstTerminator();
if (NCDTerm != NCD->end() && NCDTerm->getOpcode() == AMDGPU::SI_ELSE) {
assert(NCD->succ_size() == 2);
// We want to make sure we insert the Use after the ENDIF, not after
// the ELSE.
NCD = PDT->findNearestCommonDominator(*NCD->succ_begin(),
*(++NCD->succ_begin()));
}
for (std::pair<unsigned, LiveRange*> RegLR : SGPRLiveRanges) {
unsigned Reg = RegLR.first;
LiveRange *LR = RegLR.second;
// FIXME: We could be smarter here. If the register is Live-In to one
// block, but the other doesn't have any SGPR defs, then there won't be a
// conflict. Also, if the branch condition is uniform then there will be
// no conflict.
bool LiveInToA = LIS->isLiveInToMBB(*LR, SuccA);
bool LiveInToB = LIS->isLiveInToMBB(*LR, SuccB);
if (!LiveInToA && !LiveInToB) {
DEBUG(dbgs() << PrintReg(Reg, TRI, 0)
<< " is live into neither successor\n");
continue;
}
if (LiveInToA && LiveInToB) {
DEBUG(dbgs() << PrintReg(Reg, TRI, 0)
<< " is live into both successors\n");
continue;
}
// This interval is live in to one successor, but not the other, so
// we need to update its range so it is live in to both.
DEBUG(dbgs() << "Possible SGPR conflict detected for "
<< PrintReg(Reg, TRI, 0) << " in " << *LR
<< " BB#" << SuccA->getNumber() << ", BB#"
<< SuccB->getNumber()
<< " with NCD = BB#" << NCD->getNumber() << '\n');
assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
"Not expecting to extend live range of physreg");
// FIXME: Need to figure out how to update LiveRange here so this pass
// will be able to preserve LiveInterval analysis.
MachineInstr *NCDSGPRUse =
BuildMI(*NCD, NCD->getFirstNonPHI(), DebugLoc(),
TII->get(AMDGPU::SGPR_USE))
.addReg(Reg, RegState::Implicit);
//.........这里部分代码省略.........
示例6: tryToSinkCopy
bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
MachineFunction &MF,
const TargetRegisterInfo *TRI,
const TargetInstrInfo *TII) {
SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
// FIXME: For now, we sink only to a successor which has a single predecessor
// so that we can directly sink COPY instructions to the successor without
// adding any new block or branch instruction.
for (MachineBasicBlock *SI : CurBB.successors())
if (!SI->livein_empty() && SI->pred_size() == 1)
SinkableBBs.insert(SI);
if (SinkableBBs.empty())
return false;
bool Changed = false;
// Track which registers have been modified and used between the end of the
// block and the current instruction.
ModifiedRegUnits.clear();
UsedRegUnits.clear();
for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
MachineInstr *MI = &*I;
++I;
if (MI->isDebugInstr())
continue;
// Do not move any instruction across function call.
if (MI->isCall())
return false;
if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
TRI);
continue;
}
// Track the operand index for use in Copy.
SmallVector<unsigned, 2> UsedOpsInCopy;
// Track the register number defed in Copy.
SmallVector<unsigned, 2> DefedRegsInCopy;
// Don't sink the COPY if it would violate a register dependency.
if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
ModifiedRegUnits, UsedRegUnits)) {
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
TRI);
continue;
}
assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
"Unexpect SrcReg or DefReg");
MachineBasicBlock *SuccBB =
getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
// Don't sink if we cannot find a single sinkable successor in which Reg
// is live-in.
if (!SuccBB) {
LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
TRI);
continue;
}
assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
"Unexpected predecessor");
// Clear the kill flag if SrcReg is killed between MI and the end of the
// block.
clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
performSink(*MI, *SuccBB, InsertPos);
updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
Changed = true;
++NumPostRACopySink;
}
return Changed;
}
示例7: processBlock
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
bool isEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact)
return;
LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
<< ":\n");
unsigned SavedWQMReg = 0;
unsigned SavedNonWWMReg = 0;
bool WQMFromExec = isEntry;
char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
char NonWWMState = 0;
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
if (isEntry)
++II; // Skip the instruction that saves LiveMask
// This stores the first instruction where it's safe to switch from WQM to
// Exact or vice versa.
MachineBasicBlock::iterator FirstWQM = IE;
// This stores the first instruction where it's safe to switch from WWM to
// Exact/WQM or to switch to WWM. It must always be the same as, or after,
// FirstWQM since if it's safe to switch to/from WWM, it must be safe to
// switch to/from WQM as well.
MachineBasicBlock::iterator FirstWWM = IE;
for (;;) {
MachineBasicBlock::iterator Next = II;
char Needs = StateExact | StateWQM; // WWM is disabled by default
char OutNeeds = 0;
if (FirstWQM == IE)
FirstWQM = II;
if (FirstWWM == IE)
FirstWWM = II;
// First, figure out the allowed states (Needs) based on the propagated
// flags.
if (II != IE) {
MachineInstr &MI = *II;
if (requiresCorrectState(MI)) {
auto III = Instructions.find(&MI);
if (III != Instructions.end()) {
if (III->second.Needs & StateWWM)
Needs = StateWWM;
else if (III->second.Needs & StateWQM)
Needs = StateWQM;
else
Needs &= ~III->second.Disabled;
OutNeeds = III->second.OutNeeds;
}
} else {
// If the instruction doesn't actually need a correct EXEC, then we can
// safely leave WWM enabled.
Needs = StateExact | StateWQM | StateWWM;
}
if (MI.isTerminator() && OutNeeds == StateExact)
Needs = StateExact;
if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
MI.getOperand(3).setImm(1);
++Next;
} else {
// End of basic block
if (BI.OutNeeds & StateWQM)
Needs = StateWQM;
else if (BI.OutNeeds == StateExact)
Needs = StateExact;
else
Needs = StateWQM | StateExact;
}
// Now, transition if necessary.
if (!(Needs & State)) {
MachineBasicBlock::iterator First;
if (State == StateWWM || Needs == StateWWM) {
// We must switch to or from WWM
First = FirstWWM;
} else {
// We only need to switch to/from WQM, so we can use FirstWQM
First = FirstWQM;
}
MachineBasicBlock::iterator Before =
prepareInsertion(MBB, First, II, Needs == StateWQM,
Needs == StateExact || WQMFromExec);
//.........这里部分代码省略.........
示例8: processBlock
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
bool isEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
if (!(BI.InNeeds & StateWQM))
return;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact)
return;
DEBUG(dbgs() << "\nProcessing block BB#" << MBB.getNumber() << ":\n");
unsigned SavedWQMReg = 0;
bool WQMFromExec = isEntry;
char State = isEntry ? StateExact : StateWQM;
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
if (isEntry)
++II; // Skip the instruction that saves LiveMask
MachineBasicBlock::iterator First = IE;
for (;;) {
MachineBasicBlock::iterator Next = II;
char Needs = 0;
char OutNeeds = 0;
if (First == IE)
First = II;
if (II != IE) {
MachineInstr &MI = *II;
if (requiresCorrectState(MI)) {
auto III = Instructions.find(&MI);
if (III != Instructions.end()) {
Needs = III->second.Needs;
OutNeeds = III->second.OutNeeds;
}
}
if (MI.isTerminator() && !Needs && OutNeeds == StateExact)
Needs = StateExact;
if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
MI.getOperand(3).setImm(1);
++Next;
} else {
// End of basic block
if (BI.OutNeeds & StateWQM)
Needs = StateWQM;
else if (BI.OutNeeds == StateExact)
Needs = StateExact;
}
if (Needs) {
if (Needs != State) {
MachineBasicBlock::iterator Before =
prepareInsertion(MBB, First, II, Needs == StateWQM,
Needs == StateExact || WQMFromExec);
if (Needs == StateExact) {
if (!WQMFromExec && (OutNeeds & StateWQM))
SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
toExact(MBB, Before, SavedWQMReg, LiveMaskReg);
} else {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, Before, SavedWQMReg);
if (SavedWQMReg) {
LIS->createAndComputeVirtRegInterval(SavedWQMReg);
SavedWQMReg = 0;
}
}
State = Needs;
}
First = IE;
}
if (II == IE)
break;
II = Next;
}
}
示例9: processBlock
void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
bool isEntry) {
auto BII = Blocks.find(&MBB);
if (BII == Blocks.end())
return;
const BlockInfo &BI = BII->second;
if (!(BI.InNeeds & StateWQM))
return;
// This is a non-entry block that is WQM throughout, so no need to do
// anything.
if (!isEntry && !(BI.Needs & StateExact) && BI.OutNeeds != StateExact)
return;
unsigned SavedWQMReg = 0;
bool WQMFromExec = isEntry;
char State = isEntry ? StateExact : StateWQM;
auto II = MBB.getFirstNonPHI(), IE = MBB.end();
while (II != IE) {
MachineInstr &MI = *II;
++II;
// Skip instructions that are not affected by EXEC
if (TII->isScalarUnit(MI) && !MI.isTerminator())
continue;
// Generic instructions such as COPY will either disappear by register
// coalescing or be lowered to SALU or VALU instructions.
if (TargetInstrInfo::isGenericOpcode(MI.getOpcode())) {
if (MI.getNumExplicitOperands() >= 1) {
const MachineOperand &Op = MI.getOperand(0);
if (Op.isReg()) {
if (TRI->isSGPRReg(*MRI, Op.getReg())) {
// SGPR instructions are not affected by EXEC
continue;
}
}
}
}
char Needs = 0;
char OutNeeds = 0;
auto InstrInfoIt = Instructions.find(&MI);
if (InstrInfoIt != Instructions.end()) {
Needs = InstrInfoIt->second.Needs;
OutNeeds = InstrInfoIt->second.OutNeeds;
// Make sure to switch to Exact mode before the end of the block when
// Exact and only Exact is needed further downstream.
if (OutNeeds == StateExact && MI.isTerminator()) {
assert(Needs == 0);
Needs = StateExact;
}
}
// State switching
if (Needs && State != Needs) {
if (Needs == StateExact) {
assert(!SavedWQMReg);
if (!WQMFromExec && (OutNeeds & StateWQM))
SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
toExact(MBB, &MI, SavedWQMReg, LiveMaskReg);
} else {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, &MI, SavedWQMReg);
SavedWQMReg = 0;
}
State = Needs;
}
}
if ((BI.OutNeeds & StateWQM) && State != StateWQM) {
assert(WQMFromExec == (SavedWQMReg == 0));
toWQM(MBB, MBB.end(), SavedWQMReg);
} else if (BI.OutNeeds == StateExact && State != StateExact) {
toExact(MBB, MBB.end(), 0, LiveMaskReg);
}
}
示例10: runOnMachineFunction
bool SIFixSGPRLiveRanges::runOnMachineFunction(MachineFunction &MF) {
MachineRegisterInfo &MRI = MF.getRegInfo();
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
const SIRegisterInfo *TRI = static_cast<const SIRegisterInfo *>(
MF.getSubtarget().getRegisterInfo());
LiveIntervals *LIS = &getAnalysis<LiveIntervals>();
MachinePostDominatorTree *PDT = &getAnalysis<MachinePostDominatorTree>();
std::vector<std::pair<unsigned, LiveRange *>> SGPRLiveRanges;
// First pass, collect all live intervals for SGPRs
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
for (const MachineOperand &MO : MI.defs()) {
if (MO.isImplicit())
continue;
unsigned Def = MO.getReg();
if (TargetRegisterInfo::isVirtualRegister(Def)) {
if (TRI->isSGPRClass(MRI.getRegClass(Def)))
SGPRLiveRanges.push_back(
std::make_pair(Def, &LIS->getInterval(Def)));
} else if (TRI->isSGPRClass(TRI->getPhysRegClass(Def))) {
SGPRLiveRanges.push_back(
std::make_pair(Def, &LIS->getRegUnit(Def)));
}
}
}
}
// Second pass fix the intervals
for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
BI != BE; ++BI) {
MachineBasicBlock &MBB = *BI;
if (MBB.succ_size() < 2)
continue;
// We have structured control flow, so number of succesors should be two.
assert(MBB.succ_size() == 2);
MachineBasicBlock *SuccA = *MBB.succ_begin();
MachineBasicBlock *SuccB = *(++MBB.succ_begin());
MachineBasicBlock *NCD = PDT->findNearestCommonDominator(SuccA, SuccB);
if (!NCD)
continue;
MachineBasicBlock::iterator NCDTerm = NCD->getFirstTerminator();
if (NCDTerm != NCD->end() && NCDTerm->getOpcode() == AMDGPU::SI_ELSE) {
assert(NCD->succ_size() == 2);
// We want to make sure we insert the Use after the ENDIF, not after
// the ELSE.
NCD = PDT->findNearestCommonDominator(*NCD->succ_begin(),
*(++NCD->succ_begin()));
}
assert(SuccA && SuccB);
for (std::pair<unsigned, LiveRange*> RegLR : SGPRLiveRanges) {
unsigned Reg = RegLR.first;
LiveRange *LR = RegLR.second;
// FIXME: We could be smarter here. If the register is Live-In to
// one block, but the other doesn't have any SGPR defs, then there
// won't be a conflict. Also, if the branch decision is based on
// a value in an SGPR, then there will be no conflict.
bool LiveInToA = LIS->isLiveInToMBB(*LR, SuccA);
bool LiveInToB = LIS->isLiveInToMBB(*LR, SuccB);
if ((!LiveInToA && !LiveInToB) ||
(LiveInToA && LiveInToB))
continue;
// This interval is live in to one successor, but not the other, so
// we need to update its range so it is live in to both.
DEBUG(dbgs() << "Possible SGPR conflict detected " << " in " << *LR <<
" BB#" << SuccA->getNumber() << ", BB#" <<
SuccB->getNumber() <<
" with NCD = " << NCD->getNumber() << '\n');
// FIXME: Need to figure out how to update LiveRange here so this pass
// will be able to preserve LiveInterval analysis.
BuildMI(*NCD, NCD->getFirstNonPHI(), DebugLoc(),
TII->get(AMDGPU::SGPR_USE))
.addReg(Reg, RegState::Implicit);
DEBUG(NCD->getFirstNonPHI()->dump());
}
}
return false;
}