当前位置: 首页>>代码示例>>C++>>正文


C++ MachineBasicBlock::clear方法代码示例

本文整理汇总了C++中MachineBasicBlock::clear方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::clear方法的具体用法?C++ MachineBasicBlock::clear怎么用?C++ MachineBasicBlock::clear使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MachineBasicBlock的用法示例。


在下文中一共展示了MachineBasicBlock::clear方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: while

void X86RetpolineThunks::populateThunk(MachineFunction &MF,
                                       unsigned Reg) {
  // Set MF properties. We never use vregs...
  MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);

  // Grab the entry MBB and erase any other blocks. O0 codegen appears to
  // generate two bbs for the entry block.
  MachineBasicBlock *Entry = &MF.front();
  Entry->clear();
  while (MF.size() > 1)
    MF.erase(std::next(MF.begin()));

  MachineBasicBlock *CaptureSpec = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
  MachineBasicBlock *CallTarget = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
  MCSymbol *TargetSym = MF.getContext().createTempSymbol();
  MF.push_back(CaptureSpec);
  MF.push_back(CallTarget);

  const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
  const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;

  Entry->addLiveIn(Reg);
  BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);

  // The MIR verifier thinks that the CALL in the entry block will fall through
  // to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
  // the successor, but the MIR verifier doesn't know how to cope with that.
  Entry->addSuccessor(CaptureSpec);

  // In the capture loop for speculation, we want to stop the processor from
  // speculating as fast as possible. On Intel processors, the PAUSE instruction
  // will block speculation without consuming any execution resources. On AMD
  // processors, the PAUSE instruction is (essentially) a nop, so we also use an
  // LFENCE instruction which they have advised will stop speculation as well
  // with minimal resource utilization. We still end the capture with a jump to
  // form an infinite loop to fully guarantee that no matter what implementation
  // of the x86 ISA, speculating this code path never escapes.
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
  CaptureSpec->setHasAddressTaken();
  CaptureSpec->addSuccessor(CaptureSpec);

  CallTarget->addLiveIn(Reg);
  CallTarget->setHasAddressTaken();
  CallTarget->setAlignment(4);
  insertRegReturnAddrClobber(*CallTarget, Reg);
  CallTarget->back().setPreInstrSymbol(MF, TargetSym);
  BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
开发者ID:FreeBSDFoundation,项目名称:freebsd,代码行数:50,代码来源:X86RetpolineThunks.cpp

示例2: BuildMI

void X86RetpolineThunks::populateThunk(MachineFunction &MF,
                                       Optional<unsigned> Reg) {
  // Set MF properties. We never use vregs...
  MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);

  MachineBasicBlock *Entry = &MF.front();
  Entry->clear();

  MachineBasicBlock *CaptureSpec = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
  MachineBasicBlock *CallTarget = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
  MF.push_back(CaptureSpec);
  MF.push_back(CallTarget);

  const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
  const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;

  BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addMBB(CallTarget);
  Entry->addSuccessor(CallTarget);
  Entry->addSuccessor(CaptureSpec);
  CallTarget->setHasAddressTaken();

  // In the capture loop for speculation, we want to stop the processor from
  // speculating as fast as possible. On Intel processors, the PAUSE instruction
  // will block speculation without consuming any execution resources. On AMD
  // processors, the PAUSE instruction is (essentially) a nop, so we also use an
  // LFENCE instruction which they have advised will stop speculation as well
  // with minimal resource utilization. We still end the capture with a jump to
  // form an infinite loop to fully guarantee that no matter what implementation
  // of the x86 ISA, speculating this code path never escapes.
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
  BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
  CaptureSpec->setHasAddressTaken();
  CaptureSpec->addSuccessor(CaptureSpec);

  CallTarget->setAlignment(4);
  insertRegReturnAddrClobber(*CallTarget, *Reg);
  BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
开发者ID:bkaradzic,项目名称:SwiftShader,代码行数:39,代码来源:X86RetpolineThunks.cpp


注:本文中的MachineBasicBlock::clear方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。