本文整理汇总了C++中MachineBasicBlock::remove方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::remove方法的具体用法?C++ MachineBasicBlock::remove怎么用?C++ MachineBasicBlock::remove使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MachineBasicBlock
的用法示例。
在下文中一共展示了MachineBasicBlock::remove方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: moveTo
bool PatmosInstrInfo::moveTo(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &Target,
MachineBasicBlock::iterator &Source,
SmallVectorImpl<MachineOperand> *Pred,
bool Negate) const
{
if (Target->isBundle()) return false;
if (Target->getOpcode() == Patmos::NOP) {
// replace the NOP with the source instruction
Source = MBB.insert(Target, MBB.remove(Source));
MBB.erase(Target);
if (Pred) {
PredicateInstruction(&*Source, *Pred);
}
if (Negate) {
NegatePredicate(&*Source);
}
return true;
}
// TODO check if we can bundle the target and the source instruction, do so
return false;
}
示例2: LowerAtomicPHINode
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs. This lowering method is always correct all of the
/// time.
///
void PHIElimination::LowerAtomicPHINode(
MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt) {
++NumAtomic;
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
unsigned IncomingReg = 0;
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
else {
// Can we reuse an earlier PHI node? This only happens for critical edges,
// typically those created by tail duplication.
unsigned &entry = LoweredPHIs[MPhi];
if (entry) {
// An identical PHI node was already lowered. Reuse the incoming register.
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
} else {
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::COPY), DestReg)
.addReg(IncomingReg);
}
// Update live variable information if there is any.
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
if (IncomingReg) {
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
// Increment use count of the newly created virtual register.
VI.NumUses++;
LV->setPHIJoin(IncomingReg);
// When we are reusing the incoming register, it may already have been
// killed in this block. The old kill will also have been inserted at
// AfterPHIsIt, so it appears before the current PHICopy.
if (reusedIncoming)
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
DEBUG(MBB.dump());
}
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
}
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegisterDead(DestReg, MPhi);
}
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into the
// IncomingReg register in the corresponding predecessor basic block.
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
//.........这里部分代码省略.........
示例3: BuildMI
/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs. This lowering method is always correct all of the
/// time.
///
void llvm::PHIElimination::LowerAtomicPHINode(
MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt) {
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
unsigned IncomingReg = 0;
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
else {
IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
}
// Record PHI def.
assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?");
PHIDefs[DestReg] = &MBB;
// Update live variable information if there is any.
LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
if (IncomingReg) {
// Increment use count of the newly created virtual register.
LV->getVarInfo(IncomingReg).NumUses++;
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
}
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegisterDead(DestReg, MPhi);
}
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into the
// IncomingReg register in the corresponding predecessor basic block.
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
// path the PHI.
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
// Record the kill.
PHIKills[SrcReg].insert(&opBlock);
// If source is defined by an implicit def, there is no need to insert a
// copy.
MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
ImpDefs.insert(DefMI);
continue;
}
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
if (!MBBsInsertedInto.insert(&opBlock))
continue; // If the copy has already been emitted, we're done.
//.........这里部分代码省略.........
示例4: while
bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
bool Modified = false;
SmallSet<unsigned, 4> Defs;
SmallSet<unsigned, 4> Uses;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineInstr *MI = &*MBBI;
DebugLoc dl = MI->getDebugLoc();
unsigned PredReg = 0;
ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
if (CC == ARMCC::AL) {
++MBBI;
continue;
}
Defs.clear();
Uses.clear();
TrackDefUses(MI, Defs, Uses, TRI);
// Insert an IT instruction.
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(ARM::t2IT))
.addImm(CC);
// Add implicit use of ITSTATE to IT block instructions.
MI->addOperand(MachineOperand::CreateReg(ARM::ITSTATE, false/*ifDef*/,
true/*isImp*/, false/*isKill*/));
MachineInstr *LastITMI = MI;
MachineBasicBlock::iterator InsertPos = MIB;
++MBBI;
// Form IT block.
ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
unsigned Mask = 0, Pos = 3;
// Branches, including tricky ones like LDM_RET, need to end an IT
// block so check the instruction we just put in the block.
for (; MBBI != E && Pos &&
(!MI->isBranch() && !MI->isReturn()) ; ++MBBI) {
if (MBBI->isDebugValue())
continue;
MachineInstr *NMI = &*MBBI;
MI = NMI;
unsigned NPredReg = 0;
ARMCC::CondCodes NCC = llvm::getITInstrPredicate(NMI, NPredReg);
if (NCC == CC || NCC == OCC) {
Mask |= (NCC & 1) << Pos;
// Add implicit use of ITSTATE.
NMI->addOperand(MachineOperand::CreateReg(ARM::ITSTATE, false/*ifDef*/,
true/*isImp*/, false/*isKill*/));
LastITMI = NMI;
} else {
if (NCC == ARMCC::AL &&
MoveCopyOutOfITBlock(NMI, CC, OCC, Defs, Uses)) {
--MBBI;
MBB.remove(NMI);
MBB.insert(InsertPos, NMI);
++NumMovedInsts;
continue;
}
break;
}
TrackDefUses(NMI, Defs, Uses, TRI);
--Pos;
}
// Finalize IT mask.
Mask |= (1 << Pos);
// Tag along (firstcond[0] << 4) with the mask.
Mask |= (CC & 1) << 4;
MIB.addImm(Mask);
// Last instruction in IT block kills ITSTATE.
LastITMI->findRegisterUseOperand(ARM::ITSTATE)->setIsKill();
Modified = true;
++NumITs;
}
return Modified;
}
示例5: LowerPHINode
/// LowerPHINode - Lower the PHI node at the top of the specified block,
///
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator LastPHIIt) {
++NumLowered;
MachineBasicBlock::iterator AfterPHIsIt = llvm::next(LastPHIIt);
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
unsigned IncomingReg = 0;
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
else {
// Can we reuse an earlier PHI node? This only happens for critical edges,
// typically those created by tail duplication.
unsigned &entry = LoweredPHIs[MPhi];
if (entry) {
// An identical PHI node was already lowered. Reuse the incoming register.
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
} else {
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::COPY), DestReg)
.addReg(IncomingReg);
}
// Update live variable information if there is any.
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
if (IncomingReg) {
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
// Increment use count of the newly created virtual register.
LV->setPHIJoin(IncomingReg);
// When we are reusing the incoming register, it may already have been
// killed in this block. The old kill will also have been inserted at
// AfterPHIsIt, so it appears before the current PHICopy.
if (reusedIncoming)
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
DEBUG(MBB.dump());
}
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
}
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegisterDead(DestReg, MPhi);
}
}
// Update LiveIntervals for the new copy or implicit def.
if (LIS) {
MachineInstr *NewInstr = prior(AfterPHIsIt);
SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);
SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
if (IncomingReg) {
// Add the region from the beginning of MBB to the copy instruction to
// IncomingReg's live interval.
LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
if (!IncomingVNI)
//.........这里部分代码省略.........
示例6: moveUp
unsigned PatmosInstrInfo::moveUp(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &II,
unsigned Cycles) const
{
// TODO We assume here that we do not have instructions which must be scheduled
// *within* a certain amount of cycles, except for branches (i.e., we
// do not emit overlapping pipelined MULs). Otherwise we would need to
// check if we violate any latency constraints when inserting an instruction
// Note: We assume that the instruction has no dependencies on previous
// instructions within the given number of cycles. If we would check for this,
// this would become a complete scheduler.
// We might move an instruction
// 1) outside of delay slots -> always possible
// 2) into a delay slot -> optional, must add predicate and replace NOP or
// be bundled; we do not move other instructions around
// 3) over a branch -> always possible if not predicated, but only until next
// delay slot and if not moved into a delay slot
if (II->isBundled()) {
// TODO moving bundled instructions is not yet supported.
return Cycles;
}
MachineBasicBlock::iterator J = II;
// determine start of first delay slot above the instruction
int nonDelayed = findPrevDelaySlotEnd(MBB, J, Cycles);
// Check if the instruction is inside a delay slot
if (nonDelayed < 0) {
// do not move it out of the delay slot
// TODO we could move it, and insert a NOP instead..
return Cycles;
}
bool isBranch = II->isBranch();
bool isCFLInstr = isBranch || II->isCall() || II->isReturn();
if (nonDelayed < (int)Cycles && J->isBranch() &&
!isPredicated(&*II) && isPredicated(&*J) &&
(!isCFLInstr || (isBranch && PST.allowBranchInsideCFLDelaySots()) ))
{
// J points to the branch instruction
unsigned delayed = nonDelayed + PST.getDelaySlotCycles(&*J) + 1;
// Load the predicate of the branch
// We assume here that a bundle only contains at most one branch,
// that this instruction is the first instruction in the bundle, and
// that the branch is actually predicated.
// TODO add a check for this!
SmallVector<MachineOperand,4> Pred;
const MachineInstr *BR = getFirstMI(&*J);
assert(BR->isBranch() && "Branch is not in the first slot");
getPredicateOperands(BR, Pred);
assert(Pred.size() >= 2 && "Branch instruction not predicated");
// determine if instruction might be moved over the delay slot
if (delayed <= Cycles) {
// TODO We only move the instruction at most one cycle above the branch.
// We could move it further up, but then we need to check where the
// predicate is defined.
MachineBasicBlock::iterator JJ = J;
if (findPrevDelaySlotEnd(MBB, JJ, 0) >= 0) {
// Move the instruction up and predicate it
II = MBB.insert(J, MBB.remove(II));
PredicateInstruction(&*II, Pred);
NegatePredicate(&*II);
return Cycles - delayed;
}
}
// if not, check if we can move it into the delay slot
MachineBasicBlock::iterator dst = J;
// Going down from the branch until the first possible slot, checking
// that the predicate is not redefined.
// Note that we are not inserting the instruction, but replacing an
// instruction, i.e., we move one instruction less over II than in the
// other cases.
while ((int)delayed > nonDelayed) {
delayed--;
if (delayed <= Cycles && moveTo(MBB, dst, II, &Pred, true)) {
return Cycles - delayed;
}
// TODO check if this also finds a MTS $S0 !!
if (dst->definesRegister(Pred[0].getReg(), &getRegisterInfo())) {
break;
}
dst = nextNonPseudo(MBB, dst);
//.........这里部分代码省略.........
示例7: getPredicate
bool
Thumb2ITBlockPass::MoveCPSRUseUp(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator E,
unsigned PredReg,
ARMCC::CondCodes CC, ARMCC::CondCodes OCC,
bool &Done) {
SmallSet<unsigned, 4> Defs, Uses;
MachineBasicBlock::iterator I = MBBI;
// Look for next CPSR use by scanning up to 4 instructions.
for (unsigned i = 0; i < 4; ++i) {
MachineInstr *MI = &*I;
unsigned MPredReg = 0;
ARMCC::CondCodes MCC = getPredicate(MI, MPredReg);
if (MCC != ARMCC::AL) {
if (MPredReg != PredReg || (MCC != CC && MCC != OCC))
return false;
// Check if the instruction is using any register that's defined
// below the previous predicated instruction. Also return false if
// it defines any register which is used in between.
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef()) {
if (Reg == PredReg || Uses.count(Reg))
return false;
} else {
if (Defs.count(Reg))
return false;
}
}
Done = (I == E);
MBB.remove(MI);
MBB.insert(MBBI, MI);
++NumMovedInsts;
return true;
}
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (!Reg)
continue;
if (MO.isDef()) {
if (Reg == PredReg)
return false;
Defs.insert(Reg);
} else
Uses.insert(Reg);
}
if (I == E)
break;
++I;
}
return false;
}
示例8: while
bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
bool Modified = false;
SmallSet<unsigned, 4> Defs;
SmallSet<unsigned, 4> Uses;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineInstr *MI = &*MBBI;
DebugLoc dl = MI->getDebugLoc();
unsigned PredReg = 0;
ARMCC::CondCodes CC = getPredicate(MI, PredReg);
if (CC == ARMCC::AL) {
++MBBI;
continue;
}
Defs.clear();
Uses.clear();
TrackDefUses(MI, Defs, Uses);
// Insert an IT instruction.
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(ARM::t2IT))
.addImm(CC);
MachineBasicBlock::iterator InsertPos = MIB;
++MBBI;
// Finalize IT mask.
ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
unsigned Mask = 0, Pos = 3;
// Branches, including tricky ones like LDM_RET, need to end an IT
// block so check the instruction we just put in the block.
for (; MBBI != E && Pos &&
(!MI->getDesc().isBranch() && !MI->getDesc().isReturn()) ; ++MBBI) {
if (MBBI->isDebugValue())
continue;
MachineInstr *NMI = &*MBBI;
MI = NMI;
unsigned NPredReg = 0;
ARMCC::CondCodes NCC = getPredicate(NMI, NPredReg);
if (NCC == CC || NCC == OCC)
Mask |= (NCC & 1) << Pos;
else {
unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
if (NCC == ARMCC::AL &&
TII->isMoveInstr(*NMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
assert(SrcSubIdx == 0 && DstSubIdx == 0 &&
"Sub-register indices still around?");
// llvm models select's as two-address instructions. That means a copy
// is inserted before a t2MOVccr, etc. If the copy is scheduled in
// between selects we would end up creating multiple IT blocks.
if (!Uses.count(DstReg) && !Defs.count(SrcReg)) {
--MBBI;
MBB.remove(NMI);
MBB.insert(InsertPos, NMI);
++NumMovedInsts;
continue;
}
}
break;
}
TrackDefUses(NMI, Defs, Uses);
--Pos;
}
Mask |= (1 << Pos);
// Tag along (firstcond[0] << 4) with the mask.
Mask |= (CC & 1) << 4;
MIB.addImm(Mask);
Modified = true;
++NumITs;
}
return Modified;
}