当前位置: 首页>>代码示例>>C++>>正文


C++ MachineBasicBlock::remove方法代码示例

本文整理汇总了C++中MachineBasicBlock::remove方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::remove方法的具体用法?C++ MachineBasicBlock::remove怎么用?C++ MachineBasicBlock::remove使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MachineBasicBlock的用法示例。


在下文中一共展示了MachineBasicBlock::remove方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: moveTo

bool PatmosInstrInfo::moveTo(MachineBasicBlock &MBB,
                             MachineBasicBlock::iterator &Target,
                             MachineBasicBlock::iterator &Source,
                             SmallVectorImpl<MachineOperand> *Pred,
                             bool Negate) const
{
  if (Target->isBundle()) return false;

  if (Target->getOpcode() == Patmos::NOP) {
    // replace the NOP with the source instruction
    Source = MBB.insert(Target, MBB.remove(Source));
    MBB.erase(Target);

    if (Pred) {
      PredicateInstruction(&*Source, *Pred);
    }
    if (Negate) {
      NegatePredicate(&*Source);
    }

    return true;
  }

  // TODO check if we can bundle the target and the source instruction, do so



  return false;
}
开发者ID:stettberger,项目名称:patmos-llvm,代码行数:29,代码来源:PatmosInstrInfo.cpp

示例2: LowerAtomicPHINode

/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs.  This lowering method is always correct all of the
/// time.
///
void PHIElimination::LowerAtomicPHINode(
                                      MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator AfterPHIsIt) {
  ++NumAtomic;
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
  MachineInstr *MPhi = MBB.remove(MBB.begin());

  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
  unsigned DestReg = MPhi->getOperand(0).getReg();
  assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
  bool isDead = MPhi->getOperand(0).isDead();

  // Create a new register for the incoming PHI arguments.
  MachineFunction &MF = *MBB.getParent();
  unsigned IncomingReg = 0;
  bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?

  // Insert a register to register copy at the top of the current block (but
  // after any remaining phi nodes) which copies the new incoming register
  // into the phi node destination.
  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
  if (isSourceDefinedByImplicitDef(MPhi, MRI))
    // If all sources of a PHI node are implicit_def, just emit an
    // implicit_def instead of a copy.
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
            TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
  else {
    // Can we reuse an earlier PHI node? This only happens for critical edges,
    // typically those created by tail duplication.
    unsigned &entry = LoweredPHIs[MPhi];
    if (entry) {
      // An identical PHI node was already lowered. Reuse the incoming register.
      IncomingReg = entry;
      reusedIncoming = true;
      ++NumReused;
      DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
    } else {
      const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
      entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    }
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
            TII->get(TargetOpcode::COPY), DestReg)
      .addReg(IncomingReg);
  }

  // Update live variable information if there is any.
  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
  if (LV) {
    MachineInstr *PHICopy = prior(AfterPHIsIt);

    if (IncomingReg) {
      LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);

      // Increment use count of the newly created virtual register.
      VI.NumUses++;
      LV->setPHIJoin(IncomingReg);

      // When we are reusing the incoming register, it may already have been
      // killed in this block. The old kill will also have been inserted at
      // AfterPHIsIt, so it appears before the current PHICopy.
      if (reusedIncoming)
        if (MachineInstr *OldKill = VI.findKill(&MBB)) {
          DEBUG(dbgs() << "Remove old kill from " << *OldKill);
          LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
          DEBUG(MBB.dump());
        }

      // Add information to LiveVariables to know that the incoming value is
      // killed.  Note that because the value is defined in several places (once
      // each for each incoming block), the "def" block and instruction fields
      // for the VarInfo is not filled in.
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    }

    // Since we are going to be deleting the PHI node, if it is the last use of
    // any registers, or if the value itself is dead, we need to move this
    // information over to the new copy we just inserted.
    LV->removeVirtualRegistersKilled(MPhi);

    // If the result is dead, update LV.
    if (isDead) {
      LV->addVirtualRegisterDead(DestReg, PHICopy);
      LV->removeVirtualRegisterDead(DestReg, MPhi);
    }
  }

  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
                                 MPhi->getOperand(i).getReg())];

  // Now loop over all of the incoming arguments, changing them to copy into the
  // IncomingReg register in the corresponding predecessor basic block.
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
  for (int i = NumSrcs - 1; i >= 0; --i) {
//.........这里部分代码省略.........
开发者ID:arabori,项目名称:llvm-color-flip,代码行数:101,代码来源:PHIElimination.cpp

示例3: BuildMI

/// LowerAtomicPHINode - Lower the PHI node at the top of the specified block,
/// under the assuption that it needs to be lowered in a way that supports
/// atomic execution of PHIs.  This lowering method is always correct all of the
/// time.
///  
void llvm::PHIElimination::LowerAtomicPHINode(
                                      MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator AfterPHIsIt) {
  // Unlink the PHI node from the basic block, but don't delete the PHI yet.
  MachineInstr *MPhi = MBB.remove(MBB.begin());

  unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
  unsigned DestReg = MPhi->getOperand(0).getReg();
  bool isDead = MPhi->getOperand(0).isDead();

  // Create a new register for the incoming PHI arguments.
  MachineFunction &MF = *MBB.getParent();
  const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
  unsigned IncomingReg = 0;

  // Insert a register to register copy at the top of the current block (but
  // after any remaining phi nodes) which copies the new incoming register
  // into the phi node destination.
  const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
  if (isSourceDefinedByImplicitDef(MPhi, MRI))
    // If all sources of a PHI node are implicit_def, just emit an
    // implicit_def instead of a copy.
    BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
            TII->get(TargetInstrInfo::IMPLICIT_DEF), DestReg);
  else {
    IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
    TII->copyRegToReg(MBB, AfterPHIsIt, DestReg, IncomingReg, RC, RC);
  }

  // Record PHI def.
  assert(!hasPHIDef(DestReg) && "Vreg has multiple phi-defs?"); 
  PHIDefs[DestReg] = &MBB;

  // Update live variable information if there is any.
  LiveVariables *LV = getAnalysisIfAvailable<LiveVariables>();
  if (LV) {
    MachineInstr *PHICopy = prior(AfterPHIsIt);

    if (IncomingReg) {
      // Increment use count of the newly created virtual register.
      LV->getVarInfo(IncomingReg).NumUses++;

      // Add information to LiveVariables to know that the incoming value is
      // killed.  Note that because the value is defined in several places (once
      // each for each incoming block), the "def" block and instruction fields
      // for the VarInfo is not filled in.
      LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
    }

    // Since we are going to be deleting the PHI node, if it is the last use of
    // any registers, or if the value itself is dead, we need to move this
    // information over to the new copy we just inserted.
    LV->removeVirtualRegistersKilled(MPhi);

    // If the result is dead, update LV.
    if (isDead) {
      LV->addVirtualRegisterDead(DestReg, PHICopy);
      LV->removeVirtualRegisterDead(DestReg, MPhi);
    }
  }

  // Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
  for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
    --VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i + 1).getMBB(),
                                 MPhi->getOperand(i).getReg())];

  // Now loop over all of the incoming arguments, changing them to copy into the
  // IncomingReg register in the corresponding predecessor basic block.
  SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
  for (int i = NumSrcs - 1; i >= 0; --i) {
    unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
    assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
           "Machine PHI Operands must all be virtual registers!");

    // Get the MachineBasicBlock equivalent of the BasicBlock that is the source
    // path the PHI.
    MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();

    // Record the kill.
    PHIKills[SrcReg].insert(&opBlock);

    // If source is defined by an implicit def, there is no need to insert a
    // copy.
    MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
    if (DefMI->getOpcode() == TargetInstrInfo::IMPLICIT_DEF) {
      ImpDefs.insert(DefMI);
      continue;
    }

    // Check to make sure we haven't already emitted the copy for this block.
    // This can happen because PHI nodes may have multiple entries for the same
    // basic block.
    if (!MBBsInsertedInto.insert(&opBlock))
      continue;  // If the copy has already been emitted, we're done.
 
//.........这里部分代码省略.........
开发者ID:Killfrra,项目名称:llvm-kernel,代码行数:101,代码来源:PHIElimination.cpp

示例4: while

bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
  bool Modified = false;

  SmallSet<unsigned, 4> Defs;
  SmallSet<unsigned, 4> Uses;
  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
  while (MBBI != E) {
    MachineInstr *MI = &*MBBI;
    DebugLoc dl = MI->getDebugLoc();
    unsigned PredReg = 0;
    ARMCC::CondCodes CC = llvm::getITInstrPredicate(MI, PredReg);
    if (CC == ARMCC::AL) {
      ++MBBI;
      continue;
    }

    Defs.clear();
    Uses.clear();
    TrackDefUses(MI, Defs, Uses, TRI);

    // Insert an IT instruction.
    MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(ARM::t2IT))
      .addImm(CC);

    // Add implicit use of ITSTATE to IT block instructions.
    MI->addOperand(MachineOperand::CreateReg(ARM::ITSTATE, false/*ifDef*/,
                                             true/*isImp*/, false/*isKill*/));

    MachineInstr *LastITMI = MI;
    MachineBasicBlock::iterator InsertPos = MIB;
    ++MBBI;

    // Form IT block.
    ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
    unsigned Mask = 0, Pos = 3;
    // Branches, including tricky ones like LDM_RET, need to end an IT
    // block so check the instruction we just put in the block.
    for (; MBBI != E && Pos &&
           (!MI->isBranch() && !MI->isReturn()) ; ++MBBI) {
      if (MBBI->isDebugValue())
        continue;

      MachineInstr *NMI = &*MBBI;
      MI = NMI;

      unsigned NPredReg = 0;
      ARMCC::CondCodes NCC = llvm::getITInstrPredicate(NMI, NPredReg);
      if (NCC == CC || NCC == OCC) {
        Mask |= (NCC & 1) << Pos;
        // Add implicit use of ITSTATE.
        NMI->addOperand(MachineOperand::CreateReg(ARM::ITSTATE, false/*ifDef*/,
                                               true/*isImp*/, false/*isKill*/));
        LastITMI = NMI;
      } else {
        if (NCC == ARMCC::AL &&
            MoveCopyOutOfITBlock(NMI, CC, OCC, Defs, Uses)) {
          --MBBI;
          MBB.remove(NMI);
          MBB.insert(InsertPos, NMI);
          ++NumMovedInsts;
          continue;
        }
        break;
      }
      TrackDefUses(NMI, Defs, Uses, TRI);
      --Pos;
    }

    // Finalize IT mask.
    Mask |= (1 << Pos);
    // Tag along (firstcond[0] << 4) with the mask.
    Mask |= (CC & 1) << 4;
    MIB.addImm(Mask);

    // Last instruction in IT block kills ITSTATE.
    LastITMI->findRegisterUseOperand(ARM::ITSTATE)->setIsKill();

    Modified = true;
    ++NumITs;
  }

  return Modified;
}
开发者ID:esg,项目名称:llvm-lm32,代码行数:83,代码来源:Thumb2ITBlockPass.cpp

示例5: LowerPHINode

/// LowerPHINode - Lower the PHI node at the top of the specified block,
///
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator LastPHIIt) {
    ++NumLowered;

    MachineBasicBlock::iterator AfterPHIsIt = llvm::next(LastPHIIt);

    // Unlink the PHI node from the basic block, but don't delete the PHI yet.
    MachineInstr *MPhi = MBB.remove(MBB.begin());

    unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
    unsigned DestReg = MPhi->getOperand(0).getReg();
    assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
    bool isDead = MPhi->getOperand(0).isDead();

    // Create a new register for the incoming PHI arguments.
    MachineFunction &MF = *MBB.getParent();
    unsigned IncomingReg = 0;
    bool reusedIncoming = false;  // Is IncomingReg reused from an earlier PHI?

    // Insert a register to register copy at the top of the current block (but
    // after any remaining phi nodes) which copies the new incoming register
    // into the phi node destination.
    const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
    if (isSourceDefinedByImplicitDef(MPhi, MRI))
        // If all sources of a PHI node are implicit_def, just emit an
        // implicit_def instead of a copy.
        BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
                TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
    else {
        // Can we reuse an earlier PHI node? This only happens for critical edges,
        // typically those created by tail duplication.
        unsigned &entry = LoweredPHIs[MPhi];
        if (entry) {
            // An identical PHI node was already lowered. Reuse the incoming register.
            IncomingReg = entry;
            reusedIncoming = true;
            ++NumReused;
            DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
        } else {
            const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
            entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
        }
        BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
                TII->get(TargetOpcode::COPY), DestReg)
        .addReg(IncomingReg);
    }

    // Update live variable information if there is any.
    if (LV) {
        MachineInstr *PHICopy = prior(AfterPHIsIt);

        if (IncomingReg) {
            LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);

            // Increment use count of the newly created virtual register.
            LV->setPHIJoin(IncomingReg);

            // When we are reusing the incoming register, it may already have been
            // killed in this block. The old kill will also have been inserted at
            // AfterPHIsIt, so it appears before the current PHICopy.
            if (reusedIncoming)
                if (MachineInstr *OldKill = VI.findKill(&MBB)) {
                    DEBUG(dbgs() << "Remove old kill from " << *OldKill);
                    LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
                    DEBUG(MBB.dump());
                }

            // Add information to LiveVariables to know that the incoming value is
            // killed.  Note that because the value is defined in several places (once
            // each for each incoming block), the "def" block and instruction fields
            // for the VarInfo is not filled in.
            LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
        }

        // Since we are going to be deleting the PHI node, if it is the last use of
        // any registers, or if the value itself is dead, we need to move this
        // information over to the new copy we just inserted.
        LV->removeVirtualRegistersKilled(MPhi);

        // If the result is dead, update LV.
        if (isDead) {
            LV->addVirtualRegisterDead(DestReg, PHICopy);
            LV->removeVirtualRegisterDead(DestReg, MPhi);
        }
    }

    // Update LiveIntervals for the new copy or implicit def.
    if (LIS) {
        MachineInstr *NewInstr = prior(AfterPHIsIt);
        SlotIndex DestCopyIndex = LIS->InsertMachineInstrInMaps(NewInstr);

        SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
        if (IncomingReg) {
            // Add the region from the beginning of MBB to the copy instruction to
            // IncomingReg's live interval.
            LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
            VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
            if (!IncomingVNI)
//.........这里部分代码省略.........
开发者ID:brianwoo,项目名称:cm11_grouper,代码行数:101,代码来源:PHIElimination.cpp

示例6: moveUp

unsigned PatmosInstrInfo::moveUp(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator &II,
                                 unsigned Cycles) const
{
  // TODO We assume here that we do not have instructions which must be scheduled
  // *within* a certain amount of cycles, except for branches (i.e., we
  // do not emit overlapping pipelined MULs). Otherwise we would need to
  // check if we violate any latency constraints when inserting an instruction

  // Note: We assume that the instruction has no dependencies on previous
  // instructions within the given number of cycles. If we would check for this,
  // this would become a complete scheduler.

  // We might move an instruction
  // 1) outside of delay slots -> always possible
  // 2) into a delay slot -> optional, must add predicate and replace NOP or
  //    be bundled; we do not move other instructions around
  // 3) over a branch -> always possible if not predicated, but only until next
  //    delay slot and if not moved into a delay slot

  if (II->isBundled()) {
    // TODO moving bundled instructions is not yet supported.
    return Cycles;
  }

  MachineBasicBlock::iterator J = II;

  // determine start of first delay slot above the instruction
  int nonDelayed = findPrevDelaySlotEnd(MBB, J, Cycles);

  // Check if the instruction is inside a delay slot
  if (nonDelayed < 0) {
    // do not move it out of the delay slot
    // TODO we could move it, and insert a NOP instead..
    return Cycles;
  }

  bool isBranch = II->isBranch();
  bool isCFLInstr = isBranch || II->isCall() || II->isReturn();

  if (nonDelayed < (int)Cycles && J->isBranch() &&
      !isPredicated(&*II) && isPredicated(&*J) &&
      (!isCFLInstr || (isBranch && PST.allowBranchInsideCFLDelaySots()) ))
  {
    // J points to the branch instruction
    unsigned delayed = nonDelayed + PST.getDelaySlotCycles(&*J) + 1;

    // Load the predicate of the branch
    // We assume here that a bundle only contains at most one branch,
    // that this instruction is the first instruction in the bundle, and
    // that the branch is actually predicated.
    // TODO add a check for this!
    SmallVector<MachineOperand,4> Pred;

    const MachineInstr *BR = getFirstMI(&*J);
    assert(BR->isBranch() && "Branch is not in the first slot");

    getPredicateOperands(BR, Pred);
    assert(Pred.size() >= 2 && "Branch instruction not predicated");

    // determine if instruction might be moved over the delay slot
    if (delayed <= Cycles) {

      // TODO We only move the instruction at most one cycle above the branch.
      //      We could move it further up, but then we need to check where the
      //      predicate is defined.
      MachineBasicBlock::iterator JJ = J;
      if (findPrevDelaySlotEnd(MBB, JJ, 0) >= 0) {

        // Move the instruction up and predicate it
        II = MBB.insert(J, MBB.remove(II));

        PredicateInstruction(&*II, Pred);
        NegatePredicate(&*II);

        return Cycles - delayed;
      }
    }

    // if not, check if we can move it into the delay slot
    MachineBasicBlock::iterator dst = J;

    // Going down from the branch until the first possible slot, checking
    // that the predicate is not redefined.
    // Note that we are not inserting the instruction, but replacing an
    // instruction, i.e., we move one instruction less over II than in the
    // other cases.
    while ((int)delayed > nonDelayed) {
      delayed--;

      if (delayed <= Cycles && moveTo(MBB, dst, II, &Pred, true)) {
        return Cycles - delayed;
      }

      // TODO check if this also finds a MTS $S0 !!
      if (dst->definesRegister(Pred[0].getReg(), &getRegisterInfo())) {
        break;
      }

      dst = nextNonPseudo(MBB, dst);
//.........这里部分代码省略.........
开发者ID:stettberger,项目名称:patmos-llvm,代码行数:101,代码来源:PatmosInstrInfo.cpp

示例7: getPredicate

bool
Thumb2ITBlockPass::MoveCPSRUseUp(MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator MBBI,
                                 MachineBasicBlock::iterator E,
                                 unsigned PredReg,
                                 ARMCC::CondCodes CC, ARMCC::CondCodes OCC,
                                 bool &Done) {
  SmallSet<unsigned, 4> Defs, Uses;
  MachineBasicBlock::iterator I = MBBI;
  // Look for next CPSR use by scanning up to 4 instructions.
  for (unsigned i = 0; i < 4; ++i) {
    MachineInstr *MI = &*I;
    unsigned MPredReg = 0;
    ARMCC::CondCodes MCC = getPredicate(MI, MPredReg);
    if (MCC != ARMCC::AL) {
      if (MPredReg != PredReg || (MCC != CC && MCC != OCC))
        return false;

      // Check if the instruction is using any register that's defined
      // below the previous predicated instruction. Also return false if
      // it defines any register which is used in between.
      for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
        const MachineOperand &MO = MI->getOperand(i);
        if (!MO.isReg())
          continue;
        unsigned Reg = MO.getReg();
        if (!Reg)
          continue;
        if (MO.isDef()) {
          if (Reg == PredReg || Uses.count(Reg))
            return false;
        } else {
          if (Defs.count(Reg))
            return false;
        }
      }

      Done = (I == E);
      MBB.remove(MI);
      MBB.insert(MBBI, MI);
      ++NumMovedInsts;
      return true;
    }

    for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = MI->getOperand(i);
      if (!MO.isReg())
        continue;
      unsigned Reg = MO.getReg();
      if (!Reg)
        continue;
      if (MO.isDef()) {
        if (Reg == PredReg)
          return false;
        Defs.insert(Reg);
      } else
        Uses.insert(Reg);
    }

    if (I == E)
      break;
    ++I;
  }
  return false;
}
开发者ID:mfleming,项目名称:llvm-mirror,代码行数:65,代码来源:Thumb2ITBlockPass.cpp

示例8: while

bool Thumb2ITBlockPass::InsertITInstructions(MachineBasicBlock &MBB) {
  bool Modified = false;

  SmallSet<unsigned, 4> Defs;
  SmallSet<unsigned, 4> Uses;
  MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
  while (MBBI != E) {
    MachineInstr *MI = &*MBBI;
    DebugLoc dl = MI->getDebugLoc();
    unsigned PredReg = 0;
    ARMCC::CondCodes CC = getPredicate(MI, PredReg);
    if (CC == ARMCC::AL) {
      ++MBBI;
      continue;
    }

    Defs.clear();
    Uses.clear();
    TrackDefUses(MI, Defs, Uses);

    // Insert an IT instruction.
    MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII->get(ARM::t2IT))
      .addImm(CC);
    MachineBasicBlock::iterator InsertPos = MIB;
    ++MBBI;

    // Finalize IT mask.
    ARMCC::CondCodes OCC = ARMCC::getOppositeCondition(CC);
    unsigned Mask = 0, Pos = 3;
    // Branches, including tricky ones like LDM_RET, need to end an IT
    // block so check the instruction we just put in the block.
    for (; MBBI != E && Pos &&
           (!MI->getDesc().isBranch() && !MI->getDesc().isReturn()) ; ++MBBI) {
      if (MBBI->isDebugValue())
        continue;

      MachineInstr *NMI = &*MBBI;
      MI = NMI;

      unsigned NPredReg = 0;
      ARMCC::CondCodes NCC = getPredicate(NMI, NPredReg);
      if (NCC == CC || NCC == OCC)
        Mask |= (NCC & 1) << Pos;
      else {
        unsigned SrcReg, DstReg, SrcSubIdx, DstSubIdx;
        if (NCC == ARMCC::AL &&
            TII->isMoveInstr(*NMI, SrcReg, DstReg, SrcSubIdx, DstSubIdx)) {
          assert(SrcSubIdx == 0 && DstSubIdx == 0 &&
                 "Sub-register indices still around?");
          // llvm models select's as two-address instructions. That means a copy
          // is inserted before a t2MOVccr, etc. If the copy is scheduled in
          // between selects we would end up creating multiple IT blocks.
          if (!Uses.count(DstReg) && !Defs.count(SrcReg)) {
            --MBBI;
            MBB.remove(NMI);
            MBB.insert(InsertPos, NMI);
            ++NumMovedInsts;
            continue;
          }
        }
        break;
      }
      TrackDefUses(NMI, Defs, Uses);
      --Pos;
    }

    Mask |= (1 << Pos);
    // Tag along (firstcond[0] << 4) with the mask.
    Mask |= (CC & 1) << 4;
    MIB.addImm(Mask);
    Modified = true;
    ++NumITs;
  }

  return Modified;
}
开发者ID:mfleming,项目名称:llvm-mirror,代码行数:76,代码来源:Thumb2ITBlockPass.cpp


注:本文中的MachineBasicBlock::remove方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。