本文整理汇总了C++中MachineBasicBlock::erase_instr方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::erase_instr方法的具体用法?C++ MachineBasicBlock::erase_instr怎么用?C++ MachineBasicBlock::erase_instr使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MachineBasicBlock
的用法示例。
在下文中一共展示了MachineBasicBlock::erase_instr方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: if
//.........这里部分代码省略.........
return false;
unsigned Limit = ~0U;
if (Entry.Imm1Limit)
Limit = (1 << Entry.Imm1Limit) - 1;
const MCInstrDesc &MCID = MI->getDesc();
for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
if (MCID.OpInfo[i].isPredicate())
continue;
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg()) {
unsigned Reg = MO.getReg();
if (!Reg || Reg == ARM::CPSR)
continue;
if (Entry.LowRegs1 && !isARMLowRegister(Reg))
return false;
} else if (MO.isImm() &&
!MCID.OpInfo[i].isPredicate()) {
if (((unsigned)MO.getImm()) > Limit)
return false;
}
}
// Check if it's possible / necessary to transfer the predicate.
const MCInstrDesc &NewMCID = TII->get(Entry.NarrowOpc1);
unsigned PredReg = 0;
ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
bool SkipPred = false;
if (Pred != ARMCC::AL) {
if (!NewMCID.isPredicable())
// Can't transfer predicate, fail.
return false;
} else {
SkipPred = !NewMCID.isPredicable();
}
bool HasCC = false;
bool CCDead = false;
if (MCID.hasOptionalDef()) {
unsigned NumOps = MCID.getNumOperands();
HasCC = (MI->getOperand(NumOps-1).getReg() == ARM::CPSR);
if (HasCC && MI->getOperand(NumOps-1).isDead())
CCDead = true;
}
if (!VerifyPredAndCC(MI, Entry, false, Pred, LiveCPSR, HasCC, CCDead))
return false;
// Avoid adding a false dependency on partial flag update by some 16-bit
// instructions which has the 's' bit set.
if (Entry.PartFlag && NewMCID.hasOptionalDef() && HasCC &&
canAddPseudoFlagDep(MI, IsSelfLoop))
return false;
// Add the 16-bit instruction.
DebugLoc dl = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, NewMCID);
MIB.addOperand(MI->getOperand(0));
if (NewMCID.hasOptionalDef()) {
if (HasCC)
AddDefaultT1CC(MIB, CCDead);
else
AddNoT1CC(MIB);
}
// Transfer the rest of operands.
unsigned NumOps = MCID.getNumOperands();
for (unsigned i = 1, e = MI->getNumOperands(); i != e; ++i) {
if (i < NumOps && MCID.OpInfo[i].isOptionalDef())
continue;
if ((MCID.getOpcode() == ARM::t2RSBSri ||
MCID.getOpcode() == ARM::t2RSBri ||
MCID.getOpcode() == ARM::t2SXTB ||
MCID.getOpcode() == ARM::t2SXTH ||
MCID.getOpcode() == ARM::t2UXTB ||
MCID.getOpcode() == ARM::t2UXTH) && i == 2)
// Skip the zero immediate operand, it's now implicit.
continue;
bool isPred = (i < NumOps && MCID.OpInfo[i].isPredicate());
if (SkipPred && isPred)
continue;
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isImplicit() && MO.getReg() == ARM::CPSR)
// Skip implicit def of CPSR. Either it's modeled as an optional
// def now or it's already an implicit def on the new instruction.
continue;
MIB.addOperand(MO);
}
if (!MCID.isPredicable() && NewMCID.isPredicable())
AddDefaultPred(MIB);
// Transfer MI flags.
MIB.setMIFlags(MI->getFlags());
DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
MBB.erase_instr(MI);
++NumNarrows;
return true;
}
示例2: switch
//.........这里部分代码省略.........
bool isOK = false;
for (unsigned i = 4; i < MI->getNumOperands(); ++i) {
if (MI->getOperand(i).getReg() == BaseReg) {
isOK = true;
break;
}
}
if (!isOK)
return false;
OpNum = 0;
isLdStMul = true;
break;
}
case ARM::t2LDMIA_RET: {
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg != ARM::SP)
return false;
Opc = Entry.NarrowOpc2; // tPOP_RET
OpNum = 2;
isLdStMul = true;
break;
}
case ARM::t2LDMIA_UPD:
case ARM::t2LDMDB_UPD:
case ARM::t2STMIA_UPD:
case ARM::t2STMDB_UPD: {
OpNum = 0;
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == ARM::SP &&
(Entry.WideOpc == ARM::t2LDMIA_UPD ||
Entry.WideOpc == ARM::t2STMDB_UPD)) {
Opc = Entry.NarrowOpc2; // tPOP or tPUSH
OpNum = 2;
} else if (!isARMLowRegister(BaseReg) ||
(Entry.WideOpc != ARM::t2LDMIA_UPD &&
Entry.WideOpc != ARM::t2STMIA_UPD)) {
return false;
}
isLdStMul = true;
break;
}
}
unsigned OffsetReg = 0;
bool OffsetKill = false;
if (HasShift) {
OffsetReg = MI->getOperand(2).getReg();
OffsetKill = MI->getOperand(2).isKill();
if (MI->getOperand(3).getImm())
// Thumb1 addressing mode doesn't support shift.
return false;
}
unsigned OffsetImm = 0;
if (HasImmOffset) {
OffsetImm = MI->getOperand(2).getImm();
unsigned MaxOffset = ((1 << ImmLimit) - 1) * Scale;
if ((OffsetImm & (Scale - 1)) || OffsetImm > MaxOffset)
// Make sure the immediate field fits.
return false;
}
// Add the 16-bit load / store instruction.
DebugLoc dl = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, TII->get(Opc));
if (!isLdStMul) {
MIB.addOperand(MI->getOperand(0));
MIB.addOperand(MI->getOperand(1));
if (HasImmOffset)
MIB.addImm(OffsetImm / Scale);
assert((!HasShift || OffsetReg) && "Invalid so_reg load / store address!");
if (HasOffReg)
MIB.addReg(OffsetReg, getKillRegState(OffsetKill));
}
// Transfer the rest of operands.
for (unsigned e = MI->getNumOperands(); OpNum != e; ++OpNum)
MIB.addOperand(MI->getOperand(OpNum));
// Transfer memoperands.
MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
// Transfer MI flags.
MIB.setMIFlags(MI->getFlags());
DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " << *MIB);
MBB.erase_instr(MI);
++NumLdSts;
return true;
}
示例3: ReduceToNarrow
bool
Thumb2SizeReduce::ReduceSpecial(MachineBasicBlock &MBB, MachineInstr *MI,
const ReduceEntry &Entry,
bool LiveCPSR, bool IsSelfLoop) {
unsigned Opc = MI->getOpcode();
if (Opc == ARM::t2ADDri) {
// If the source register is SP, try to reduce to tADDrSPi, otherwise
// it's a normal reduce.
if (MI->getOperand(1).getReg() != ARM::SP) {
if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
return true;
return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
}
// Try to reduce to tADDrSPi.
unsigned Imm = MI->getOperand(2).getImm();
// The immediate must be in range, the destination register must be a low
// reg, the predicate must be "always" and the condition flags must not
// be being set.
if (Imm & 3 || Imm > 1020)
return false;
if (!isARMLowRegister(MI->getOperand(0).getReg()))
return false;
if (MI->getOperand(3).getImm() != ARMCC::AL)
return false;
const MCInstrDesc &MCID = MI->getDesc();
if (MCID.hasOptionalDef() &&
MI->getOperand(MCID.getNumOperands()-1).getReg() == ARM::CPSR)
return false;
MachineInstrBuilder MIB = BuildMI(MBB, MI, MI->getDebugLoc(),
TII->get(ARM::tADDrSPi))
.addOperand(MI->getOperand(0))
.addOperand(MI->getOperand(1))
.addImm(Imm / 4); // The tADDrSPi has an implied scale by four.
AddDefaultPred(MIB);
// Transfer MI flags.
MIB.setMIFlags(MI->getFlags());
DEBUG(errs() << "Converted 32-bit: " << *MI << " to 16-bit: " <<*MIB);
MBB.erase_instr(MI);
++NumNarrows;
return true;
}
if (Entry.LowRegs1 && !VerifyLowRegs(MI))
return false;
if (MI->mayLoad() || MI->mayStore())
return ReduceLoadStore(MBB, MI, Entry);
switch (Opc) {
default: break;
case ARM::t2ADDSri:
case ARM::t2ADDSrr: {
unsigned PredReg = 0;
if (getInstrPredicate(MI, PredReg) == ARMCC::AL) {
switch (Opc) {
default: break;
case ARM::t2ADDSri: {
if (ReduceTo2Addr(MBB, MI, Entry, LiveCPSR, IsSelfLoop))
return true;
// fallthrough
}
case ARM::t2ADDSrr:
return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
}
}
break;
}
case ARM::t2RSBri:
case ARM::t2RSBSri:
case ARM::t2SXTB:
case ARM::t2SXTH:
case ARM::t2UXTB:
case ARM::t2UXTH:
if (MI->getOperand(2).getImm() == 0)
return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
break;
case ARM::t2MOVi16:
// Can convert only 'pure' immediate operands, not immediates obtained as
// globals' addresses.
if (MI->getOperand(1).isImm())
return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
break;
case ARM::t2CMPrr: {
// Try to reduce to the lo-reg only version first. Why there are two
// versions of the instruction is a mystery.
// It would be nice to just have two entries in the master table that
// are prioritized, but the table assumes a unique entry for each
// source insn opcode. So for now, we hack a local entry record to use.
static const ReduceEntry NarrowEntry =
{ ARM::t2CMPrr,ARM::tCMPr, 0, 0, 0, 1, 1,2, 0, 0,1,0 };
if (ReduceToNarrow(MBB, MI, NarrowEntry, LiveCPSR, IsSelfLoop))
return true;
return ReduceToNarrow(MBB, MI, Entry, LiveCPSR, IsSelfLoop);
}
}
return false;
//.........这里部分代码省略.........
示例4: switch
//.........这里部分代码省略.........
// If the base register is killed, we don't care what its value is after the
// instruction, so we can use an updating STMIA.
if (!MI->getOperand(0).isKill())
return false;
break;
case ARM::t2LDMIA_RET: {
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg != ARM::SP)
return false;
Opc = Entry.NarrowOpc2; // tPOP_RET
OpNum = 2;
isLdStMul = true;
break;
}
case ARM::t2LDMIA_UPD:
case ARM::t2STMIA_UPD:
case ARM::t2STMDB_UPD: {
OpNum = 0;
unsigned BaseReg = MI->getOperand(1).getReg();
if (BaseReg == ARM::SP &&
(Entry.WideOpc == ARM::t2LDMIA_UPD ||
Entry.WideOpc == ARM::t2STMDB_UPD)) {
Opc = Entry.NarrowOpc2; // tPOP or tPUSH
OpNum = 2;
} else if (!isARMLowRegister(BaseReg) ||
(Entry.WideOpc != ARM::t2LDMIA_UPD &&
Entry.WideOpc != ARM::t2STMIA_UPD)) {
return false;
}
isLdStMul = true;
break;
}
}
unsigned OffsetReg = 0;
bool OffsetKill = false;
bool OffsetInternal = false;
if (HasShift) {
OffsetReg = MI->getOperand(2).getReg();
OffsetKill = MI->getOperand(2).isKill();
OffsetInternal = MI->getOperand(2).isInternalRead();
if (MI->getOperand(3).getImm())
// Thumb1 addressing mode doesn't support shift.
return false;
}
unsigned OffsetImm = 0;
if (HasImmOffset) {
OffsetImm = MI->getOperand(2).getImm();
unsigned MaxOffset = ((1 << ImmLimit) - 1) * Scale;
if ((OffsetImm & (Scale - 1)) || OffsetImm > MaxOffset)
// Make sure the immediate field fits.
return false;
}
// Add the 16-bit load / store instruction.
DebugLoc dl = MI->getDebugLoc();
MachineInstrBuilder MIB = BuildMI(MBB, MI, dl, TII->get(Opc));
// tSTMIA_UPD takes a defining register operand. We've already checked that
// the register is killed, so mark it as dead here.
if (Entry.WideOpc == ARM::t2STMIA)
MIB.addReg(MI->getOperand(0).getReg(), RegState::Define | RegState::Dead);
if (!isLdStMul) {
MIB.add(MI->getOperand(0));
MIB.add(MI->getOperand(1));
if (HasImmOffset)
MIB.addImm(OffsetImm / Scale);
assert((!HasShift || OffsetReg) && "Invalid so_reg load / store address!");
if (HasOffReg)
MIB.addReg(OffsetReg, getKillRegState(OffsetKill) |
getInternalReadRegState(OffsetInternal));
}
// Transfer the rest of operands.
for (unsigned e = MI->getNumOperands(); OpNum != e; ++OpNum)
MIB.add(MI->getOperand(OpNum));
// Transfer memoperands.
MIB.setMemRefs(MI->memoperands());
// Transfer MI flags.
MIB.setMIFlags(MI->getFlags());
LLVM_DEBUG(errs() << "Converted 32-bit: " << *MI
<< " to 16-bit: " << *MIB);
MBB.erase_instr(MI);
++NumLdSts;
return true;
}