本文整理汇总了C++中MachineBasicBlock::addSuccessor方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::addSuccessor方法的具体用法?C++ MachineBasicBlock::addSuccessor怎么用?C++ MachineBasicBlock::addSuccessor使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MachineBasicBlock
的用法示例。
在下文中一共展示了MachineBasicBlock::addSuccessor方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: DebugLoc
/// Split the basic block containing MI into two blocks, which are joined by
/// an unconditional branch. Update data structures and renumber blocks to
/// account for this change and returns the newly created block.
MachineBasicBlock *BranchRelaxation::splitBlockBeforeInstr(MachineInstr &MI,
MachineBasicBlock *DestBB) {
MachineBasicBlock *OrigBB = MI.getParent();
// Create a new MBB for the code after the OrigBB.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
MF->insert(++OrigBB->getIterator(), NewBB);
// Splice the instructions starting with MI over to NewBB.
NewBB->splice(NewBB->end(), OrigBB, MI.getIterator(), OrigBB->end());
// Add an unconditional branch from OrigBB to NewBB.
// Note the new unconditional branch is not being recorded.
// There doesn't seem to be meaningful DebugInfo available; this doesn't
// correspond to anything in the source.
TII->insertUnconditionalBranch(*OrigBB, NewBB, DebugLoc());
// Insert an entry into BlockInfo to align it properly with the block numbers.
BlockInfo.insert(BlockInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
NewBB->transferSuccessors(OrigBB);
OrigBB->addSuccessor(NewBB);
OrigBB->addSuccessor(DestBB);
// Cleanup potential unconditional branch to successor block.
// Note that updateTerminator may change the size of the blocks.
NewBB->updateTerminator();
OrigBB->updateTerminator();
// Figure out how large the OrigBB is. As the first half of the original
// block, it cannot contain a tablejump. The size includes
// the new jump we added. (It should be possible to do this without
// recounting everything, but it's very confusing, and this is rarely
// executed.)
BlockInfo[OrigBB->getNumber()].Size = computeBlockSize(*OrigBB);
// Figure out how large the NewMBB is. As the second half of the original
// block, it may contain a tablejump.
BlockInfo[NewBB->getNumber()].Size = computeBlockSize(*NewBB);
// All BBOffsets following these blocks must be modified.
adjustBlockOffsets(*OrigBB);
// Need to fix live-in lists if we track liveness.
if (TRI->trackLivenessAfterRegAlloc(*MF))
computeLiveIns(LiveRegs, *TRI, *NewBB);
++NumSplit;
return NewBB;
}
示例2: while
void X86RetpolineThunks::populateThunk(MachineFunction &MF,
unsigned Reg) {
// Set MF properties. We never use vregs...
MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
// Grab the entry MBB and erase any other blocks. O0 codegen appears to
// generate two bbs for the entry block.
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
while (MF.size() > 1)
MF.erase(std::next(MF.begin()));
MachineBasicBlock *CaptureSpec = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MachineBasicBlock *CallTarget = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MCSymbol *TargetSym = MF.getContext().createTempSymbol();
MF.push_back(CaptureSpec);
MF.push_back(CallTarget);
const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;
Entry->addLiveIn(Reg);
BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addSym(TargetSym);
// The MIR verifier thinks that the CALL in the entry block will fall through
// to CaptureSpec, so mark it as the successor. Technically, CaptureTarget is
// the successor, but the MIR verifier doesn't know how to cope with that.
Entry->addSuccessor(CaptureSpec);
// In the capture loop for speculation, we want to stop the processor from
// speculating as fast as possible. On Intel processors, the PAUSE instruction
// will block speculation without consuming any execution resources. On AMD
// processors, the PAUSE instruction is (essentially) a nop, so we also use an
// LFENCE instruction which they have advised will stop speculation as well
// with minimal resource utilization. We still end the capture with a jump to
// form an infinite loop to fully guarantee that no matter what implementation
// of the x86 ISA, speculating this code path never escapes.
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
CaptureSpec->setHasAddressTaken();
CaptureSpec->addSuccessor(CaptureSpec);
CallTarget->addLiveIn(Reg);
CallTarget->setHasAddressTaken();
CallTarget->setAlignment(4);
insertRegReturnAddrClobber(*CallTarget, Reg);
CallTarget->back().setPreInstrSymbol(MF, TargetSym);
BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
示例3: expandLOCRMux
// MI is a load-register-on-condition pseudo instruction that could not be
// handled as a single hardware instruction. Replace it by a branch sequence.
bool SystemZExpandPseudo::expandLOCRMux(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineFunction &MF = *MBB.getParent();
const BasicBlock *BB = MBB.getBasicBlock();
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
unsigned DestReg = MI.getOperand(0).getReg();
unsigned SrcReg = MI.getOperand(2).getReg();
unsigned CCValid = MI.getOperand(3).getImm();
unsigned CCMask = MI.getOperand(4).getImm();
LivePhysRegs LiveRegs(TII->getRegisterInfo());
LiveRegs.addLiveOuts(MBB);
for (auto I = std::prev(MBB.end()); I != MBBI; --I)
LiveRegs.stepBackward(*I);
// Splice MBB at MI, moving the rest of the block into RestMBB.
MachineBasicBlock *RestMBB = MF.CreateMachineBasicBlock(BB);
MF.insert(std::next(MachineFunction::iterator(MBB)), RestMBB);
RestMBB->splice(RestMBB->begin(), &MBB, MI, MBB.end());
RestMBB->transferSuccessors(&MBB);
for (auto I = LiveRegs.begin(); I != LiveRegs.end(); ++I)
RestMBB->addLiveIn(*I);
// Create a new block MoveMBB to hold the move instruction.
MachineBasicBlock *MoveMBB = MF.CreateMachineBasicBlock(BB);
MF.insert(std::next(MachineFunction::iterator(MBB)), MoveMBB);
MoveMBB->addLiveIn(SrcReg);
for (auto I = LiveRegs.begin(); I != LiveRegs.end(); ++I)
MoveMBB->addLiveIn(*I);
// At the end of MBB, create a conditional branch to RestMBB if the
// condition is false, otherwise fall through to MoveMBB.
BuildMI(&MBB, DL, TII->get(SystemZ::BRC))
.addImm(CCValid).addImm(CCMask ^ CCValid).addMBB(RestMBB);
MBB.addSuccessor(RestMBB);
MBB.addSuccessor(MoveMBB);
// In MoveMBB, emit an instruction to move SrcReg into DestReg,
// then fall through to RestMBB.
TII->copyPhysReg(*MoveMBB, MoveMBB->end(), DL, DestReg, SrcReg,
MI.getOperand(2).isKill());
MoveMBB->addSuccessor(RestMBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
return true;
}
示例4: initializeMachineBasicBlock
bool MIRParserImpl::initializeMachineBasicBlock(
MachineFunction &MF, MachineBasicBlock &MBB,
const yaml::MachineBasicBlock &YamlMBB,
const PerFunctionMIParsingState &PFS) {
MBB.setAlignment(YamlMBB.Alignment);
if (YamlMBB.AddressTaken)
MBB.setHasAddressTaken();
MBB.setIsLandingPad(YamlMBB.IsLandingPad);
SMDiagnostic Error;
// Parse the successors.
for (const auto &MBBSource : YamlMBB.Successors) {
MachineBasicBlock *SuccMBB = nullptr;
if (parseMBBReference(SuccMBB, MBBSource, MF, PFS))
return true;
// TODO: Report an error when adding the same successor more than once.
MBB.addSuccessor(SuccMBB);
}
// Parse the liveins.
for (const auto &LiveInSource : YamlMBB.LiveIns) {
unsigned Reg = 0;
if (parseNamedRegisterReference(Reg, SM, MF, LiveInSource.Value, PFS,
IRSlots, Error))
return error(Error, LiveInSource.SourceRange);
MBB.addLiveIn(Reg);
}
// Parse the instructions.
for (const auto &MISource : YamlMBB.Instructions) {
MachineInstr *MI = nullptr;
if (parseMachineInstr(MI, SM, MF, MISource.Value, PFS, IRSlots, Error))
return error(Error, MISource.SourceRange);
MBB.insert(MBB.end(), MI);
}
return false;
}
示例5: BuildMI
static void addEpilogOnlyR10(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB) {
const DebugLoc &DL = MI.getDebugLoc();
// xor r10, r10
BuildMI(MBB, MI, DL, TII->get(X86::XOR64rr))
.addDef(X86::R10)
.addReg(X86::R10, RegState::Undef)
.addReg(X86::R10, RegState::Undef);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// mov r10, [gs:r10]
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::MOV64rm)).addDef(X86::R10),
X86::GS, X86::R10);
// sub QWORD [gs:0], 8
// This instruction should not be moved up to avoid a signal race.
addSegmentedMem(BuildMI(MBB, MI, DL, TII->get(X86::SUB64mi8)), X86::GS, 0)
.addImm(8);
// cmp [rsp], r10
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(X86::R10);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
示例6: PlaceLoopMarker
/// Insert a LOOP marker for a loop starting at MBB (if it's a loop header).
static void PlaceLoopMarker(MachineBasicBlock &MBB, MachineFunction &MF,
SmallVectorImpl<MachineBasicBlock *> &ScopeTops,
const WebAssemblyInstrInfo &TII,
const MachineLoopInfo &MLI) {
MachineLoop *Loop = MLI.getLoopFor(&MBB);
if (!Loop || Loop->getHeader() != &MBB)
return;
// The operand of a LOOP is the first block after the loop. If the loop is the
// bottom of the function, insert a dummy block at the end.
MachineBasicBlock *Bottom = LoopBottom(Loop);
auto Iter = next(MachineFunction::iterator(Bottom));
if (Iter == MF.end()) {
MachineBasicBlock *Label = MF.CreateMachineBasicBlock();
// Give it a fake predecessor so that AsmPrinter prints its label.
Label->addSuccessor(Label);
MF.push_back(Label);
Iter = next(MachineFunction::iterator(Bottom));
}
MachineBasicBlock *AfterLoop = &*Iter;
BuildMI(MBB, MBB.begin(), DebugLoc(), TII.get(WebAssembly::LOOP))
.addMBB(AfterLoop);
// Emit a special no-op telling the asm printer that we need a label to close
// the loop scope, even though the destination is only reachable by
// fallthrough.
if (!Bottom->back().isBarrier())
BuildMI(*Bottom, Bottom->end(), DebugLoc(), TII.get(WebAssembly::LOOP_END));
assert((!ScopeTops[AfterLoop->getNumber()] ||
ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) &&
"With RPO we should visit the outer-most loop for a block first.");
if (!ScopeTops[AfterLoop->getNumber()])
ScopeTops[AfterLoop->getNumber()] = &MBB;
}
示例7: addEpilogLeaf
static void addEpilogLeaf(const TargetInstrInfo *TII, MachineBasicBlock &MBB,
MachineInstr &MI, MachineBasicBlock &TrapBB,
MCPhysReg FreeRegister) {
const DebugLoc &DL = MI.getDebugLoc();
// cmp [rsp], REG
addDirectMem(BuildMI(MBB, MI, DL, TII->get(X86::CMP64mr)), X86::RSP)
.addReg(FreeRegister);
// jne trap
BuildMI(MBB, MI, DL, TII->get(X86::JNE_1)).addMBB(&TrapBB);
MBB.addSuccessor(&TrapBB);
}
示例8: BuildMI
void X86RetpolineThunks::populateThunk(MachineFunction &MF,
Optional<unsigned> Reg) {
// Set MF properties. We never use vregs...
MF.getProperties().set(MachineFunctionProperties::Property::NoVRegs);
MachineBasicBlock *Entry = &MF.front();
Entry->clear();
MachineBasicBlock *CaptureSpec = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MachineBasicBlock *CallTarget = MF.CreateMachineBasicBlock(Entry->getBasicBlock());
MF.push_back(CaptureSpec);
MF.push_back(CallTarget);
const unsigned CallOpc = Is64Bit ? X86::CALL64pcrel32 : X86::CALLpcrel32;
const unsigned RetOpc = Is64Bit ? X86::RETQ : X86::RETL;
BuildMI(Entry, DebugLoc(), TII->get(CallOpc)).addMBB(CallTarget);
Entry->addSuccessor(CallTarget);
Entry->addSuccessor(CaptureSpec);
CallTarget->setHasAddressTaken();
// In the capture loop for speculation, we want to stop the processor from
// speculating as fast as possible. On Intel processors, the PAUSE instruction
// will block speculation without consuming any execution resources. On AMD
// processors, the PAUSE instruction is (essentially) a nop, so we also use an
// LFENCE instruction which they have advised will stop speculation as well
// with minimal resource utilization. We still end the capture with a jump to
// form an infinite loop to fully guarantee that no matter what implementation
// of the x86 ISA, speculating this code path never escapes.
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::PAUSE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::LFENCE));
BuildMI(CaptureSpec, DebugLoc(), TII->get(X86::JMP_1)).addMBB(CaptureSpec);
CaptureSpec->setHasAddressTaken();
CaptureSpec->addSuccessor(CaptureSpec);
CallTarget->setAlignment(4);
insertRegReturnAddrClobber(*CallTarget, *Reg);
BuildMI(CallTarget, DebugLoc(), TII->get(RetOpc));
}
示例9: assert
MachineBasicBlock *PHIElimination::SplitCriticalEdge(MachineBasicBlock *A,
MachineBasicBlock *B) {
assert(A && B && "Missing MBB end point");
MachineFunction *MF = A->getParent();
// We may need to update A's terminator, but we can't do that if AnalyzeBranch
// fails. If A uses a jump table, we won't touch it.
const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
MachineBasicBlock *TBB = 0, *FBB = 0;
SmallVector<MachineOperand, 4> Cond;
if (TII->AnalyzeBranch(*A, TBB, FBB, Cond))
return NULL;
++NumSplits;
MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
MF->insert(llvm::next(MachineFunction::iterator(A)), NMBB);
DEBUG(dbgs() << "PHIElimination splitting critical edge:"
" BB#" << A->getNumber()
<< " -- BB#" << NMBB->getNumber()
<< " -- BB#" << B->getNumber() << '\n');
A->ReplaceUsesOfBlockWith(B, NMBB);
A->updateTerminator();
// Insert unconditional "jump B" instruction in NMBB if necessary.
NMBB->addSuccessor(B);
if (!NMBB->isLayoutSuccessor(B)) {
Cond.clear();
MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, B, NULL, Cond);
}
// Fix PHI nodes in B so they refer to NMBB instead of A
for (MachineBasicBlock::iterator i = B->begin(), e = B->end();
i != e && i->isPHI(); ++i)
for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
if (i->getOperand(ni+1).getMBB() == A)
i->getOperand(ni+1).setMBB(NMBB);
if (LiveVariables *LV=getAnalysisIfAvailable<LiveVariables>())
LV->addNewBlock(NMBB, A, B);
if (MachineDominatorTree *MDT=getAnalysisIfAvailable<MachineDominatorTree>())
MDT->addNewBlock(NMBB, A);
return NMBB;
}
示例10: PlaceLoopMarker
/// Insert a LOOP marker for a loop starting at MBB (if it's a loop header).
static void PlaceLoopMarker(
MachineBasicBlock &MBB, MachineFunction &MF,
SmallVectorImpl<MachineBasicBlock *> &ScopeTops,
DenseMap<const MachineInstr *, const MachineBasicBlock *> &LoopTops,
const WebAssemblyInstrInfo &TII, const MachineLoopInfo &MLI) {
MachineLoop *Loop = MLI.getLoopFor(&MBB);
if (!Loop || Loop->getHeader() != &MBB)
return;
// The operand of a LOOP is the first block after the loop. If the loop is the
// bottom of the function, insert a dummy block at the end.
MachineBasicBlock *Bottom = LoopBottom(Loop);
auto Iter = next(MachineFunction::iterator(Bottom));
if (Iter == MF.end()) {
MachineBasicBlock *Label = MF.CreateMachineBasicBlock();
// Give it a fake predecessor so that AsmPrinter prints its label.
Label->addSuccessor(Label);
MF.push_back(Label);
Iter = next(MachineFunction::iterator(Bottom));
}
MachineBasicBlock *AfterLoop = &*Iter;
// Mark the beginning of the loop (after the end of any existing loop that
// ends here).
auto InsertPos = MBB.begin();
while (InsertPos != MBB.end() &&
InsertPos->getOpcode() == WebAssembly::END_LOOP)
++InsertPos;
BuildMI(MBB, InsertPos, DebugLoc(), TII.get(WebAssembly::LOOP));
// Mark the end of the loop.
MachineInstr *End = BuildMI(*AfterLoop, AfterLoop->begin(), DebugLoc(),
TII.get(WebAssembly::END_LOOP));
LoopTops[End] = &MBB;
assert((!ScopeTops[AfterLoop->getNumber()] ||
ScopeTops[AfterLoop->getNumber()]->getNumber() < MBB.getNumber()) &&
"With block sorting the outermost loop for a block should be first.");
if (!ScopeTops[AfterLoop->getNumber()])
ScopeTops[AfterLoop->getNumber()] = &MBB;
}
示例11: fixupUnconditionalBranch
bool BranchRelaxation::fixupUnconditionalBranch(MachineInstr &MI) {
MachineBasicBlock *MBB = MI.getParent();
unsigned OldBrSize = TII->getInstSizeInBytes(MI);
MachineBasicBlock *DestBB = TII->getBranchDestBlock(MI);
int64_t DestOffset = BlockInfo[DestBB->getNumber()].Offset;
int64_t SrcOffset = getInstrOffset(MI);
assert(!TII->isBranchOffsetInRange(MI.getOpcode(), DestOffset - SrcOffset));
BlockInfo[MBB->getNumber()].Size -= OldBrSize;
MachineBasicBlock *BranchBB = MBB;
// If this was an expanded conditional branch, there is already a single
// unconditional branch in a block.
if (!MBB->empty()) {
BranchBB = createNewBlockAfter(*MBB);
// Add live outs.
for (const MachineBasicBlock *Succ : MBB->successors()) {
for (const MachineBasicBlock::RegisterMaskPair &LiveIn : Succ->liveins())
BranchBB->addLiveIn(LiveIn);
}
BranchBB->sortUniqueLiveIns();
BranchBB->addSuccessor(DestBB);
MBB->replaceSuccessor(DestBB, BranchBB);
}
DebugLoc DL = MI.getDebugLoc();
MI.eraseFromParent();
BlockInfo[BranchBB->getNumber()].Size += TII->insertIndirectBranch(
*BranchBB, *DestBB, DL, DestOffset - SrcOffset, RS.get());
adjustBlockOffsets(*MBB);
return true;
}
示例12: DEBUG
/// Do expand branches and split the basic blocks if necessary.
/// Returns true if made any change.
bool MSP430BSel::expandBranches(OffsetVector &BlockOffsets) {
// For each conditional branch, if the offset to its destination is larger
// than the offset field allows, transform it into a long branch sequence
// like this:
// short branch:
// bCC MBB
// long branch:
// b!CC $PC+6
// b MBB
//
bool MadeChange = false;
for (auto MBB = MF->begin(), E = MF->end(); MBB != E; ++MBB) {
unsigned MBBStartOffset = 0;
for (auto MI = MBB->begin(), EE = MBB->end(); MI != EE; ++MI) {
MBBStartOffset += TII->getInstSizeInBytes(*MI);
// If this instruction is not a short branch then skip it.
if (MI->getOpcode() != MSP430::JCC && MI->getOpcode() != MSP430::JMP) {
continue;
}
MachineBasicBlock *DestBB = MI->getOperand(0).getMBB();
// Determine the distance from the current branch to the destination
// block. MBBStartOffset already includes the size of the current branch
// instruction.
int BlockDistance =
BlockOffsets[DestBB->getNumber()] - BlockOffsets[MBB->getNumber()];
int BranchDistance = BlockDistance - MBBStartOffset;
// If this branch is in range, ignore it.
if (isInRage(BranchDistance)) {
continue;
}
DEBUG(dbgs() << " Found a branch that needs expanding, BB#"
<< DestBB->getNumber() << ", Distance " << BranchDistance
<< "\n");
// If JCC is not the last instruction we need to split the MBB.
if (MI->getOpcode() == MSP430::JCC && std::next(MI) != EE) {
DEBUG(dbgs() << " Found a basic block that needs to be split, BB#"
<< MBB->getNumber() << "\n");
// Create a new basic block.
MachineBasicBlock *NewBB =
MF->CreateMachineBasicBlock(MBB->getBasicBlock());
MF->insert(std::next(MBB), NewBB);
// Splice the instructions following MI over to the NewBB.
NewBB->splice(NewBB->end(), &*MBB, std::next(MI), MBB->end());
// Update the successor lists.
for (MachineBasicBlock *Succ : MBB->successors()) {
if (Succ == DestBB) {
continue;
}
MBB->replaceSuccessor(Succ, NewBB);
NewBB->addSuccessor(Succ);
}
// We introduced a new MBB so all following blocks should be numbered
// and measured again.
measureFunction(BlockOffsets, &*MBB);
++NumSplit;
// It may be not necessary to start all over at this point, but it's
// safer do this anyway.
return true;
}
MachineInstr &OldBranch = *MI;
DebugLoc dl = OldBranch.getDebugLoc();
int InstrSizeDiff = -TII->getInstSizeInBytes(OldBranch);
if (MI->getOpcode() == MSP430::JCC) {
MachineBasicBlock *NextMBB = &*std::next(MBB);
assert(MBB->isSuccessor(NextMBB) &&
"This block must have a layout successor!");
// The BCC operands are:
// 0. Target MBB
// 1. MSP430 branch predicate
SmallVector<MachineOperand, 1> Cond;
Cond.push_back(MI->getOperand(1));
// Jump over the long branch on the opposite condition
TII->reverseBranchCondition(Cond);
MI = BuildMI(*MBB, MI, dl, TII->get(MSP430::JCC))
.addMBB(NextMBB)
.add(Cond[0]);
InstrSizeDiff += TII->getInstSizeInBytes(*MI);
++MI;
}
// Unconditional branch to the real destination.
MI = BuildMI(*MBB, MI, dl, TII->get(MSP430::Bi)).addMBB(DestBB);
//.........这里部分代码省略.........
示例13: DEBUG
/// TailDuplicate - If it is profitable, duplicate TailBB's contents in each
/// of its predecessors.
bool
TailDuplicatePass::TailDuplicate(MachineBasicBlock *TailBB, MachineFunction &MF,
SmallVector<MachineBasicBlock*, 8> &TDBBs,
SmallVector<MachineInstr*, 16> &Copies) {
if (!shouldTailDuplicate(MF, *TailBB))
return false;
DEBUG(dbgs() << "\n*** Tail-duplicating BB#" << TailBB->getNumber() << '\n');
// Iterate through all the unique predecessors and tail-duplicate this
// block into them, if possible. Copying the list ahead of time also
// avoids trouble with the predecessor list reallocating.
bool Changed = false;
SmallSetVector<MachineBasicBlock*, 8> Preds(TailBB->pred_begin(),
TailBB->pred_end());
DenseSet<unsigned> UsedByPhi;
getRegsUsedByPHIs(*TailBB, &UsedByPhi);
for (SmallSetVector<MachineBasicBlock *, 8>::iterator PI = Preds.begin(),
PE = Preds.end(); PI != PE; ++PI) {
MachineBasicBlock *PredBB = *PI;
assert(TailBB != PredBB &&
"Single-block loop should have been rejected earlier!");
// EH edges are ignored by AnalyzeBranch.
if (PredBB->succ_size() > 1)
continue;
MachineBasicBlock *PredTBB, *PredFBB;
SmallVector<MachineOperand, 4> PredCond;
if (TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true))
continue;
if (!PredCond.empty())
continue;
// Don't duplicate into a fall-through predecessor (at least for now).
if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
continue;
DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
<< "From Succ: " << *TailBB);
TDBBs.push_back(PredBB);
// Remove PredBB's unconditional branch.
TII->RemoveBranch(*PredBB);
// Clone the contents of TailBB into PredBB.
DenseMap<unsigned, unsigned> LocalVRMap;
SmallVector<std::pair<unsigned,unsigned>, 4> CopyInfos;
MachineBasicBlock::iterator I = TailBB->begin();
while (I != TailBB->end()) {
MachineInstr *MI = &*I;
++I;
if (MI->isPHI()) {
// Replace the uses of the def of the PHI with the register coming
// from PredBB.
ProcessPHI(MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
} else {
// Replace def of virtual registers with new registers, and update
// uses with PHI source register or the new registers.
DuplicateInstruction(MI, TailBB, PredBB, MF, LocalVRMap, UsedByPhi);
}
}
MachineBasicBlock::iterator Loc = PredBB->getFirstTerminator();
for (unsigned i = 0, e = CopyInfos.size(); i != e; ++i) {
Copies.push_back(BuildMI(*PredBB, Loc, DebugLoc(),
TII->get(TargetOpcode::COPY),
CopyInfos[i].first).addReg(CopyInfos[i].second));
}
// Simplify
TII->AnalyzeBranch(*PredBB, PredTBB, PredFBB, PredCond, true);
NumInstrDups += TailBB->size() - 1; // subtract one for removed branch
// Update the CFG.
PredBB->removeSuccessor(PredBB->succ_begin());
assert(PredBB->succ_empty() &&
"TailDuplicate called on block with multiple successors!");
for (MachineBasicBlock::succ_iterator I = TailBB->succ_begin(),
E = TailBB->succ_end(); I != E; ++I)
PredBB->addSuccessor(*I);
Changed = true;
++NumTailDups;
}
// If TailBB was duplicated into all its predecessors except for the prior
// block, which falls through unconditionally, move the contents of this
// block into the prior block.
MachineBasicBlock *PrevBB = prior(MachineFunction::iterator(TailBB));
MachineBasicBlock *PriorTBB = 0, *PriorFBB = 0;
SmallVector<MachineOperand, 4> PriorCond;
// This has to check PrevBB->succ_size() because EH edges are ignored by
// AnalyzeBranch.
if (PrevBB->succ_size() == 1 &&
!TII->AnalyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond, true) &&
PriorCond.empty() && !PriorTBB && TailBB->pred_size() == 1 &&
!TailBB->hasAddressTaken()) {
//.........这里部分代码省略.........
示例14: fixupConditionalBranch
/// fixupConditionalBranch - Fix up a conditional branch whose destination is
/// too far away to fit in its displacement field. It is converted to an inverse
/// conditional branch + an unconditional branch to the destination.
bool BranchRelaxation::fixupConditionalBranch(MachineInstr &MI) {
DebugLoc DL = MI.getDebugLoc();
MachineBasicBlock *MBB = MI.getParent();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
MachineBasicBlock *NewBB = nullptr;
SmallVector<MachineOperand, 4> Cond;
auto insertUncondBranch = [&](MachineBasicBlock *MBB,
MachineBasicBlock *DestBB) {
unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
int NewBrSize = 0;
TII->insertUnconditionalBranch(*MBB, DestBB, DL, &NewBrSize);
BBSize += NewBrSize;
};
auto insertBranch = [&](MachineBasicBlock *MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
SmallVectorImpl<MachineOperand>& Cond) {
unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
int NewBrSize = 0;
TII->insertBranch(*MBB, TBB, FBB, Cond, DL, &NewBrSize);
BBSize += NewBrSize;
};
auto removeBranch = [&](MachineBasicBlock *MBB) {
unsigned &BBSize = BlockInfo[MBB->getNumber()].Size;
int RemovedSize = 0;
TII->removeBranch(*MBB, &RemovedSize);
BBSize -= RemovedSize;
};
auto finalizeBlockChanges = [&](MachineBasicBlock *MBB,
MachineBasicBlock *NewBB) {
// Keep the block offsets up to date.
adjustBlockOffsets(*MBB);
// Need to fix live-in lists if we track liveness.
if (NewBB && TRI->trackLivenessAfterRegAlloc(*MF))
computeAndAddLiveIns(LiveRegs, *NewBB);
};
bool Fail = TII->analyzeBranch(*MBB, TBB, FBB, Cond);
assert(!Fail && "branches to be relaxed must be analyzable");
(void)Fail;
// Add an unconditional branch to the destination and invert the branch
// condition to jump over it:
// tbz L1
// =>
// tbnz L2
// b L1
// L2:
bool ReversedCond = !TII->reverseBranchCondition(Cond);
if (ReversedCond) {
if (FBB && isBlockInRange(MI, *FBB)) {
// Last MI in the BB is an unconditional branch. We can simply invert the
// condition and swap destinations:
// beq L1
// b L2
// =>
// bne L2
// b L1
LLVM_DEBUG(dbgs() << " Invert condition and swap "
"its destination with "
<< MBB->back());
removeBranch(MBB);
insertBranch(MBB, FBB, TBB, Cond);
finalizeBlockChanges(MBB, nullptr);
return true;
}
if (FBB) {
// We need to split the basic block here to obtain two long-range
// unconditional branches.
NewBB = createNewBlockAfter(*MBB);
insertUncondBranch(NewBB, FBB);
// Update the succesor lists according to the transformation to follow.
// Do it here since if there's no split, no update is needed.
MBB->replaceSuccessor(FBB, NewBB);
NewBB->addSuccessor(FBB);
}
// We now have an appropriate fall-through block in place (either naturally or
// just created), so we can use the inverted the condition.
MachineBasicBlock &NextBB = *std::next(MachineFunction::iterator(MBB));
LLVM_DEBUG(dbgs() << " Insert B to " << printMBBReference(*TBB)
<< ", invert condition and change dest. to "
<< printMBBReference(NextBB) << '\n');
removeBranch(MBB);
// Insert a new conditional branch and a new unconditional branch.
insertBranch(MBB, &NextBB, TBB, Cond);
finalizeBlockChanges(MBB, NewBB);
return true;
}
//.........这里部分代码省略.........
示例15: if
//.........这里部分代码省略.........
UsedRegs.push_back(Reg);
}
}
}
ReplaceUsesOfBlockWith(Succ, NMBB);
// If updateTerminator() removes instructions, we need to remove them from
// SlotIndexes.
SmallVector<MachineInstr*, 4> Terminators;
if (Indexes) {
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I)
Terminators.push_back(I);
}
updateTerminator();
if (Indexes) {
SmallVector<MachineInstr*, 4> NewTerminators;
for (instr_iterator I = getFirstInstrTerminator(), E = instr_end();
I != E; ++I)
NewTerminators.push_back(I);
for (SmallVectorImpl<MachineInstr*>::iterator I = Terminators.begin(),
E = Terminators.end(); I != E; ++I) {
if (std::find(NewTerminators.begin(), NewTerminators.end(), *I) ==
NewTerminators.end())
Indexes->removeMachineInstrFromMaps(*I);
}
}
// Insert unconditional "jump Succ" instruction in NMBB if necessary.
NMBB->addSuccessor(Succ);
if (!NMBB->isLayoutSuccessor(Succ)) {
Cond.clear();
MF->getSubtarget().getInstrInfo()->InsertBranch(*NMBB, Succ, nullptr, Cond,
dl);
if (Indexes) {
for (instr_iterator I = NMBB->instr_begin(), E = NMBB->instr_end();
I != E; ++I) {
// Some instructions may have been moved to NMBB by updateTerminator(),
// so we first remove any instruction that already has an index.
if (Indexes->hasIndex(I))
Indexes->removeMachineInstrFromMaps(I);
Indexes->insertMachineInstrInMaps(I);
}
}
}
// Fix PHI nodes in Succ so they refer to NMBB instead of this
for (MachineBasicBlock::instr_iterator
i = Succ->instr_begin(),e = Succ->instr_end();
i != e && i->isPHI(); ++i)
for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
if (i->getOperand(ni+1).getMBB() == this)
i->getOperand(ni+1).setMBB(NMBB);
// Inherit live-ins from the successor
for (MachineBasicBlock::livein_iterator I = Succ->livein_begin(),
E = Succ->livein_end(); I != E; ++I)
NMBB->addLiveIn(*I);
// Update LiveVariables.
const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();