本文整理汇总了C++中MachineBasicBlock::instr_end方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::instr_end方法的具体用法?C++ MachineBasicBlock::instr_end怎么用?C++ MachineBasicBlock::instr_end使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类MachineBasicBlock
的用法示例。
在下文中一共展示了MachineBasicBlock::instr_end方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: findDelayInstr
/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
/// We assume there is only one delay slot per delayed instruction.
bool Filler::
runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Changed = false;
LastFiller = MBB.instr_end();
for (InstrIter I = MBB.instr_begin(); I != MBB.instr_end(); ++I)
if (I->hasDelaySlot()) {
++FilledSlots;
Changed = true;
InstrIter D;
// Delay slot filling is disabled at -O0.
if (!DisableDelaySlotFiller && (TM.getOptLevel() != CodeGenOpt::None) &&
findDelayInstr(MBB, I, D)) {
MBB.splice(llvm::next(I), &MBB, D);
++UsefulSlots;
} else
BuildMI(MBB, llvm::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
// Record the filler instruction that filled the delay slot.
// The instruction after it will be visited in the next iteration.
LastFiller = ++I;
// Set InsideBundle bit so that the machine verifier doesn't expect this
// instruction to be a terminator.
LastFiller->setIsInsideBundle();
}
return Changed;
}
示例2: runOnMachineBasicBlock
// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
// There is one or two delay slot per delayed instruction.
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
bool Changed = false;
LastFiller = MBB.instr_end();
for (MachineBasicBlock::instr_iterator I = MBB.instr_begin();
I != MBB.instr_end(); ++I) {
if (I->getDesc().hasDelaySlot()) {
MachineBasicBlock::instr_iterator InstrWithSlot = I;
MachineBasicBlock::instr_iterator J = I;
// Treat RET specially as it is only instruction with 2 delay slots
// generated while all others generated have 1 delay slot.
if (I->getOpcode() == Lanai::RET) {
// RET is generated as part of epilogue generation and hence we know
// what the two instructions preceding it are and that it is safe to
// insert RET above them.
MachineBasicBlock::reverse_instr_iterator RI(I);
assert(RI->getOpcode() == Lanai::LDW_RI && RI->getOperand(0).isReg() &&
RI->getOperand(0).getReg() == Lanai::FP &&
RI->getOperand(1).isReg() &&
RI->getOperand(1).getReg() == Lanai::FP &&
RI->getOperand(2).isImm() && RI->getOperand(2).getImm() == -8);
++RI;
assert(RI->getOpcode() == Lanai::ADD_I_LO &&
RI->getOperand(0).isReg() &&
RI->getOperand(0).getReg() == Lanai::SP &&
RI->getOperand(1).isReg() &&
RI->getOperand(1).getReg() == Lanai::FP);
++RI;
MachineBasicBlock::instr_iterator FI(RI.base());
MBB.splice(std::next(I), &MBB, FI, I);
FilledSlots += 2;
} else {
if (!NopDelaySlotFiller && findDelayInstr(MBB, I, J)) {
MBB.splice(std::next(I), &MBB, J);
} else {
BuildMI(MBB, std::next(I), DebugLoc(), TII->get(Lanai::NOP));
}
++FilledSlots;
}
Changed = true;
// Record the filler instruction that filled the delay slot.
// The instruction after it will be visited in the next iteration.
LastFiller = ++I;
// Bundle the delay slot filler to InstrWithSlot so that the machine
// verifier doesn't expect this instruction to be a terminator.
MIBundleBuilder(MBB, InstrWithSlot, std::next(LastFiller));
}
}
return Changed;
}
示例3: runOnMachineFunction
bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) {
bool Changed = false;
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
MachineBasicBlock *MBB = &*I;
for (MachineBasicBlock::instr_iterator MII = MBB->instr_begin(),
MIE = MBB->instr_end(); MII != MIE; ) {
MachineInstr *MI = &*MII;
// Remove BUNDLE instruction and the InsideBundle flags from bundled
// instructions.
if (MI->isBundle()) {
while (++MII != MIE && MII->isBundledWithPred()) {
MII->unbundleFromPred();
for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) {
MachineOperand &MO = MII->getOperand(i);
if (MO.isReg() && MO.isInternalRead())
MO.setIsInternalRead(false);
}
}
MI->eraseFromParent();
Changed = true;
continue;
}
++MII;
}
}
return Changed;
}
示例4: while
void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *FromMBB) {
if (this == FromMBB)
return;
while (!FromMBB->succ_empty()) {
MachineBasicBlock *Succ = *FromMBB->succ_begin();
if (!FromMBB->Probs.empty()) {
auto Prob = *FromMBB->Probs.begin();
addSuccessor(Succ, Prob);
} else
addSuccessorWithoutProb(Succ);
FromMBB->removeSuccessor(Succ);
// Fix up any PHI nodes in the successor.
for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
MachineOperand &MO = MI->getOperand(i);
if (MO.getMBB() == FromMBB)
MO.setMBB(this);
}
}
normalizeSuccProbs();
}
示例5: skipPseudos
void PatmosInstrInfo::skipPseudos(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator &II) const
{
while (II != MBB.instr_end() && isPseudo(II)) {
II++;
}
}
示例6: AnalyzeBranch
// Branch analysis.
bool WebAssemblyInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool /*AllowModify*/) const {
bool HaveCond = false;
for (MachineInstr &MI : iterator_range<MachineBasicBlock::instr_iterator>(
MBB.getFirstInstrTerminator(), MBB.instr_end())) {
switch (MI.getOpcode()) {
default:
// Unhandled instruction; bail out.
return true;
case WebAssembly::BR_IF:
if (HaveCond)
return true;
Cond.push_back(MI.getOperand(0));
TBB = MI.getOperand(1).getMBB();
HaveCond = true;
break;
case WebAssembly::BR:
if (!HaveCond)
TBB = MI.getOperand(0).getMBB();
else
FBB = MI.getOperand(0).getMBB();
break;
}
if (MI.isBarrier())
break;
}
return false;
}
示例7: initMBBInfo
// Fill MBBInfos.
void MipsLongBranch::initMBBInfo() {
// Split the MBBs if they have two branches. Each basic block should have at
// most one branch after this loop is executed.
for (auto &MBB : *MF)
splitMBB(&MBB);
MF->RenumberBlocks();
MBBInfos.clear();
MBBInfos.resize(MF->size());
const MipsInstrInfo *TII =
static_cast<const MipsInstrInfo *>(MF->getSubtarget().getInstrInfo());
for (unsigned I = 0, E = MBBInfos.size(); I < E; ++I) {
MachineBasicBlock *MBB = MF->getBlockNumbered(I);
// Compute size of MBB.
for (MachineBasicBlock::instr_iterator MI = MBB->instr_begin();
MI != MBB->instr_end(); ++MI)
MBBInfos[I].Size += TII->GetInstSizeInBytes(&*MI);
// Search for MBB's branch instruction.
ReverseIter End = MBB->rend();
ReverseIter Br = getNonDebugInstr(MBB->rbegin(), End);
if ((Br != End) && !Br->isIndirectBranch() &&
(Br->isConditionalBranch() ||
(Br->isUnconditionalBranch() &&
TM.getRelocationModel() == Reloc::PIC_)))
MBBInfos[I].Br = (++Br).base();
}
}
示例8: RemoveBranch
unsigned WebAssemblyInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::instr_iterator I = MBB.instr_end();
unsigned Count = 0;
while (I != MBB.instr_begin()) {
--I;
if (I->isDebugValue())
continue;
if (!I->isTerminator())
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.instr_end();
++Count;
}
return Count;
}
示例9: while
/// finalizeBundle - Same functionality as the previous finalizeBundle except
/// the last instruction in the bundle is not provided as an input. This is
/// used in cases where bundles are pre-determined by marking instructions
/// with 'InsideBundle' marker. It returns the MBB instruction iterator that
/// points to the end of the bundle.
MachineBasicBlock::instr_iterator
llvm::finalizeBundle(MachineBasicBlock &MBB,
MachineBasicBlock::instr_iterator FirstMI) {
MachineBasicBlock::instr_iterator E = MBB.instr_end();
MachineBasicBlock::instr_iterator LastMI = std::next(FirstMI);
while (LastMI != E && LastMI->isInsideBundle())
++LastMI;
finalizeBundle(MBB, FirstMI, LastMI);
return LastMI;
}
示例10: removeBranch
unsigned WebAssemblyInstrInfo::removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved) const {
assert(!BytesRemoved && "code size not handled");
MachineBasicBlock::instr_iterator I = MBB.instr_end();
unsigned Count = 0;
while (I != MBB.instr_begin()) {
--I;
if (I->isDebugInstr())
continue;
if (!I->isTerminator())
break;
// Remove the branch.
I->eraseFromParent();
I = MBB.instr_end();
++Count;
}
return Count;
}
示例11: ClauseFile
ClauseFile
MakeALUClause(MachineBasicBlock &MBB, MachineBasicBlock::iterator &I)
const {
MachineBasicBlock::iterator ClauseHead = I;
std::vector<MachineInstr *> ClauseContent;
I++;
for (MachineBasicBlock::instr_iterator E = MBB.instr_end(); I != E;) {
if (IsTrivialInst(I)) {
++I;
continue;
}
if (!I->isBundle() && !TII->isALUInstr(I->getOpcode()))
break;
std::vector<int64_t> Literals;
if (I->isBundle()) {
MachineInstr *DeleteMI = I;
MachineBasicBlock::instr_iterator BI = I.getInstrIterator();
while (++BI != E && BI->isBundledWithPred()) {
BI->unbundleFromPred();
for (unsigned i = 0, e = BI->getNumOperands(); i != e; ++i) {
MachineOperand &MO = BI->getOperand(i);
if (MO.isReg() && MO.isInternalRead())
MO.setIsInternalRead(false);
}
getLiteral(BI, Literals);
ClauseContent.push_back(BI);
}
I = BI;
DeleteMI->eraseFromParent();
} else {
getLiteral(I, Literals);
ClauseContent.push_back(I);
I++;
}
for (unsigned i = 0, e = Literals.size(); i < e; i+=2) {
unsigned literal0 = Literals[i];
unsigned literal2 = (i + 1 < e)?Literals[i + 1]:0;
MachineInstr *MILit = BuildMI(MBB, I, I->getDebugLoc(),
TII->get(AMDGPU::LITERALS))
.addImm(literal0)
.addImm(literal2);
ClauseContent.push_back(MILit);
}
}
ClauseHead->getOperand(7).setImm(ClauseContent.size() - 1);
return ClauseFile(ClauseHead, ClauseContent);
}
示例12: SinkIntoLoop
/// Sink instructions into loops if profitable. This especially tries to prevent
/// register spills caused by register pressure if there is little to no
/// overhead moving instructions into loops.
void MachineLICM::SinkIntoLoop() {
MachineBasicBlock *Preheader = getCurPreheader();
if (!Preheader)
return;
SmallVector<MachineInstr *, 8> Candidates;
for (MachineBasicBlock::instr_iterator I = Preheader->instr_begin();
I != Preheader->instr_end(); ++I) {
// We need to ensure that we can safely move this instruction into the loop.
// As such, it must not have side-effects, e.g. such as a call has.
if (IsLoopInvariantInst(*I) && !HasLoopPHIUse(&*I))
Candidates.push_back(&*I);
}
for (MachineInstr *I : Candidates) {
const MachineOperand &MO = I->getOperand(0);
if (!MO.isDef() || !MO.isReg() || !MO.getReg())
continue;
if (!MRI->hasOneDef(MO.getReg()))
continue;
bool CanSink = true;
MachineBasicBlock *B = nullptr;
for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
// FIXME: Come up with a proper cost model that estimates whether sinking
// the instruction (and thus possibly executing it on every loop
// iteration) is more expensive than a register.
// For now assumes that copies are cheap and thus almost always worth it.
if (!MI.isCopy()) {
CanSink = false;
break;
}
if (!B) {
B = MI.getParent();
continue;
}
B = DT->findNearestCommonDominator(B, MI.getParent());
if (!B) {
CanSink = false;
break;
}
}
if (!CanSink || !B || B == Preheader)
continue;
B->splice(B->getFirstNonPHI(), Preheader, I);
}
}
示例13: while
void
MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
if (this == fromMBB)
return;
while (!fromMBB->succ_empty()) {
MachineBasicBlock *Succ = *fromMBB->succ_begin();
addSuccessor(Succ);
fromMBB->removeSuccessor(Succ);
// Fix up any PHI nodes in the successor.
for (MachineBasicBlock::instr_iterator MI = Succ->instr_begin(),
ME = Succ->instr_end(); MI != ME && MI->isPHI(); ++MI)
for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
MachineOperand &MO = MI->getOperand(i);
if (MO.getMBB() == fromMBB)
MO.setMBB(this);
}
}
}
示例14: runOnMachineBasicBlock
bool DeadMemOpElimination::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
AliasSetTracker AST(*AA);
DefMapTy ReachingDefMap;
typedef AliasSetTracker::iterator ast_iterator;
for (instr_iterator I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) {
unsigned Opcode = I->getOpcode();
if (Opcode == VTM::VOpInternalCall) {
updateReachingDefByCallInst(I, ReachingDefMap);
continue;
}
if (Opcode != VTM::VOpMemTrans && Opcode != VTM::VOpBRAMTrans) continue;
I = handleMemOp(I, ReachingDefMap, AST);
}
return true;
}
示例15: UpdateCPSRUse
bool Thumb2SizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
bool Modified = false;
// Yes, CPSR could be livein.
bool LiveCPSR = MBB.isLiveIn(ARM::CPSR);
MachineInstr *BundleMI = 0;
CPSRDef = 0;
HighLatencyCPSR = false;
// Check predecessors for the latest CPSRDef.
for (MachineBasicBlock::pred_iterator
I = MBB.pred_begin(), E = MBB.pred_end(); I != E; ++I) {
const MBBInfo &PInfo = BlockInfo[(*I)->getNumber()];
if (!PInfo.Visited) {
// Since blocks are visited in RPO, this must be a back-edge.
continue;
}
if (PInfo.HighLatencyCPSR) {
HighLatencyCPSR = true;
break;
}
}
// If this BB loops back to itself, conservatively avoid narrowing the
// first instruction that does partial flag update.
bool IsSelfLoop = MBB.isSuccessor(&MBB);
MachineBasicBlock::instr_iterator MII = MBB.instr_begin(),E = MBB.instr_end();
MachineBasicBlock::instr_iterator NextMII;
for (; MII != E; MII = NextMII) {
NextMII = llvm::next(MII);
MachineInstr *MI = &*MII;
if (MI->isBundle()) {
BundleMI = MI;
continue;
}
if (MI->isDebugValue())
continue;
LiveCPSR = UpdateCPSRUse(*MI, LiveCPSR);
// Does NextMII belong to the same bundle as MI?
bool NextInSameBundle = NextMII != E && NextMII->isBundledWithPred();
if (ReduceMI(MBB, MI, LiveCPSR, IsSelfLoop)) {
Modified = true;
MachineBasicBlock::instr_iterator I = prior(NextMII);
MI = &*I;
// Removing and reinserting the first instruction in a bundle will break
// up the bundle. Fix the bundling if it was broken.
if (NextInSameBundle && !NextMII->isBundledWithPred())
NextMII->bundleWithPred();
}
if (!NextInSameBundle && MI->isInsideBundle()) {
// FIXME: Since post-ra scheduler operates on bundles, the CPSR kill
// marker is only on the BUNDLE instruction. Process the BUNDLE
// instruction as we finish with the bundled instruction to work around
// the inconsistency.
if (BundleMI->killsRegister(ARM::CPSR))
LiveCPSR = false;
MachineOperand *MO = BundleMI->findRegisterDefOperand(ARM::CPSR);
if (MO && !MO->isDead())
LiveCPSR = true;
}
bool DefCPSR = false;
LiveCPSR = UpdateCPSRDef(*MI, LiveCPSR, DefCPSR);
if (MI->isCall()) {
// Calls don't really set CPSR.
CPSRDef = 0;
HighLatencyCPSR = false;
IsSelfLoop = false;
} else if (DefCPSR) {
// This is the last CPSR defining instruction.
CPSRDef = MI;
HighLatencyCPSR = isHighLatencyCPSR(CPSRDef);
IsSelfLoop = false;
}
}
MBBInfo &Info = BlockInfo[MBB.getNumber()];
Info.HighLatencyCPSR = HighLatencyCPSR;
Info.Visited = true;
return Modified;
}