当前位置: 首页>>代码示例>>C++>>正文


C++ MachineBasicBlock::predecessors方法代码示例

本文整理汇总了C++中MachineBasicBlock::predecessors方法的典型用法代码示例。如果您正苦于以下问题:C++ MachineBasicBlock::predecessors方法的具体用法?C++ MachineBasicBlock::predecessors怎么用?C++ MachineBasicBlock::predecessors使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在MachineBasicBlock的用法示例。


在下文中一共展示了MachineBasicBlock::predecessors方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: propagateBlock

void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
                                     std::vector<WorkItem>& Worklist) {
  BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.

  // Propagate through instructions
  if (!MBB.empty()) {
    MachineInstr *LastMI = &*MBB.rbegin();
    InstrInfo &LastII = Instructions[LastMI];
    if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
      LastII.OutNeeds |= BI.OutNeeds;
      Worklist.push_back(LastMI);
    }
  }

  // Predecessor blocks must provide for our WQM/Exact needs.
  for (MachineBasicBlock *Pred : MBB.predecessors()) {
    BlockInfo &PredBI = Blocks[Pred];
    if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
      continue;

    PredBI.OutNeeds |= BI.InNeeds;
    PredBI.InNeeds |= BI.InNeeds;
    Worklist.push_back(Pred);
  }

  // All successors must be prepared to accept the same set of WQM/Exact data.
  for (MachineBasicBlock *Succ : MBB.successors()) {
    BlockInfo &SuccBI = Blocks[Succ];
    if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
      continue;

    SuccBI.InNeeds |= BI.OutNeeds;
    Worklist.push_back(Succ);
  }
}
开发者ID:CTSRD-CHERI,项目名称:cheribsd,代码行数:35,代码来源:SIWholeQuadMode.cpp

示例2: canCompletelyDuplicateBB

bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
  for (MachineBasicBlock *PredBB : BB.predecessors()) {
    if (PredBB->succ_size() > 1)
      return false;

    MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
    SmallVector<MachineOperand, 4> PredCond;
    if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
      return false;

    if (!PredCond.empty())
      return false;
  }
  return true;
}
开发者ID:CTSRD-SOAAP,项目名称:llvm,代码行数:15,代码来源:TailDuplicator.cpp

示例3: PlaceBlockMarker

/// Insert a BLOCK marker for branches to MBB (if needed).
static void PlaceBlockMarker(MachineBasicBlock &MBB, MachineFunction &MF,
                             SmallVectorImpl<MachineBasicBlock *> &ScopeTops,
                             const WebAssemblyInstrInfo &TII,
                             const MachineLoopInfo &MLI,
                             MachineDominatorTree &MDT,
                             WebAssemblyFunctionInfo &MFI) {
  // First compute the nearest common dominator of all forward non-fallthrough
  // predecessors so that we minimize the time that the BLOCK is on the stack,
  // which reduces overall stack height.
  MachineBasicBlock *Header = nullptr;
  bool IsBranchedTo = false;
  int MBBNumber = MBB.getNumber();
  for (MachineBasicBlock *Pred : MBB.predecessors())
    if (Pred->getNumber() < MBBNumber) {
      Header = Header ? MDT.findNearestCommonDominator(Header, Pred) : Pred;
      if (ExplicitlyBranchesTo(Pred, &MBB))
        IsBranchedTo = true;
    }
  if (!Header)
    return;
  if (!IsBranchedTo)
    return;

  assert(&MBB != &MF.front() && "Header blocks shouldn't have predecessors");
  MachineBasicBlock *LayoutPred = &*prev(MachineFunction::iterator(&MBB));

  // If the nearest common dominator is inside a more deeply nested context,
  // walk out to the nearest scope which isn't more deeply nested.
  for (MachineFunction::iterator I(LayoutPred), E(Header); I != E; --I) {
    if (MachineBasicBlock *ScopeTop = ScopeTops[I->getNumber()]) {
      if (ScopeTop->getNumber() > Header->getNumber()) {
        // Skip over an intervening scope.
        I = next(MachineFunction::iterator(ScopeTop));
      } else {
        // We found a scope level at an appropriate depth.
        Header = ScopeTop;
        break;
      }
    }
  }

  // If there's a loop which ends just before MBB which contains Header, we can
  // reuse its label instead of inserting a new BLOCK.
  for (MachineLoop *Loop = MLI.getLoopFor(LayoutPred);
       Loop && Loop->contains(LayoutPred); Loop = Loop->getParentLoop())
    if (Loop && LoopBottom(Loop) == LayoutPred && Loop->contains(Header))
      return;

  // Decide where in Header to put the BLOCK.
  MachineBasicBlock::iterator InsertPos;
  MachineLoop *HeaderLoop = MLI.getLoopFor(Header);
  if (HeaderLoop && MBB.getNumber() > LoopBottom(HeaderLoop)->getNumber()) {
    // Header is the header of a loop that does not lexically contain MBB, so
    // the BLOCK needs to be above the LOOP, after any END constructs.
    InsertPos = Header->begin();
    while (InsertPos->getOpcode() != WebAssembly::LOOP)
      ++InsertPos;
  } else {
    // Otherwise, insert the BLOCK as late in Header as we can, but before the
    // beginning of the local expression tree and any nested BLOCKs.
    InsertPos = Header->getFirstTerminator();
    while (InsertPos != Header->begin() && IsChild(prev(InsertPos), MFI) &&
           prev(InsertPos)->getOpcode() != WebAssembly::LOOP &&
           prev(InsertPos)->getOpcode() != WebAssembly::END_BLOCK &&
           prev(InsertPos)->getOpcode() != WebAssembly::END_LOOP)
      --InsertPos;
  }

  // Add the BLOCK.
  BuildMI(*Header, InsertPos, DebugLoc(), TII.get(WebAssembly::BLOCK));

  // Mark the end of the block.
  InsertPos = MBB.begin();
  while (InsertPos != MBB.end() &&
         InsertPos->getOpcode() == WebAssembly::END_LOOP)
    ++InsertPos;
  BuildMI(MBB, InsertPos, DebugLoc(), TII.get(WebAssembly::END_BLOCK));

  // Track the farthest-spanning scope that ends at this point.
  int Number = MBB.getNumber();
  if (!ScopeTops[Number] ||
      ScopeTops[Number]->getNumber() > Header->getNumber())
    ScopeTops[Number] = Header;
}
开发者ID:AnachroNia,项目名称:llvm,代码行数:85,代码来源:WebAssemblyCFGStackify.cpp

示例4: VisitLoop

bool WebAssemblyFixIrreducibleControlFlow::VisitLoop(MachineFunction &MF,
                                                     MachineLoopInfo &MLI,
                                                     MachineLoop *Loop) {
  MachineBasicBlock *Header = Loop ? Loop->getHeader() : &*MF.begin();
  SetVector<MachineBasicBlock *> RewriteSuccs;

  // DFS through Loop's body, looking for for irreducible control flow. Loop is
  // natural, and we stay in its body, and we treat any nested loops
  // monolithically, so any cycles we encounter indicate irreducibility.
  SmallPtrSet<MachineBasicBlock *, 8> OnStack;
  SmallPtrSet<MachineBasicBlock *, 8> Visited;
  SmallVector<SuccessorList, 4> LoopWorklist;
  LoopWorklist.push_back(SuccessorList(Header));
  OnStack.insert(Header);
  Visited.insert(Header);
  while (!LoopWorklist.empty()) {
    SuccessorList &Top = LoopWorklist.back();
    if (Top.HasNext()) {
      MachineBasicBlock *Next = Top.Next();
      if (Next == Header || (Loop && !Loop->contains(Next)))
        continue;
      if (LLVM_LIKELY(OnStack.insert(Next).second)) {
        if (!Visited.insert(Next).second) {
          OnStack.erase(Next);
          continue;
        }
        MachineLoop *InnerLoop = MLI.getLoopFor(Next);
        if (InnerLoop != Loop)
          LoopWorklist.push_back(SuccessorList(InnerLoop));
        else
          LoopWorklist.push_back(SuccessorList(Next));
      } else {
        RewriteSuccs.insert(Top.getBlock());
      }
      continue;
    }
    OnStack.erase(Top.getBlock());
    LoopWorklist.pop_back();
  }

  // Most likely, we didn't find any irreducible control flow.
  if (LLVM_LIKELY(RewriteSuccs.empty()))
    return false;

  DEBUG(dbgs() << "Irreducible control flow detected!\n");

  // Ok. We have irreducible control flow! Create a dispatch block which will
  // contains a jump table to any block in the problematic set of blocks.
  MachineBasicBlock *Dispatch = MF.CreateMachineBasicBlock();
  MF.insert(MF.end(), Dispatch);
  MLI.changeLoopFor(Dispatch, Loop);

  // Add the jump table.
  const auto &TII = *MF.getSubtarget<WebAssemblySubtarget>().getInstrInfo();
  MachineInstrBuilder MIB = BuildMI(*Dispatch, Dispatch->end(), DebugLoc(),
                                    TII.get(WebAssembly::BR_TABLE_I32));

  // Add the register which will be used to tell the jump table which block to
  // jump to.
  MachineRegisterInfo &MRI = MF.getRegInfo();
  unsigned Reg = MRI.createVirtualRegister(&WebAssembly::I32RegClass);
  MIB.addReg(Reg);

  // Collect all the blocks which need to have their successors rewritten,
  // add the successors to the jump table, and remember their index.
  DenseMap<MachineBasicBlock *, unsigned> Indices;
  SmallVector<MachineBasicBlock *, 4> SuccWorklist(RewriteSuccs.begin(),
                                                   RewriteSuccs.end());
  while (!SuccWorklist.empty()) {
    MachineBasicBlock *MBB = SuccWorklist.pop_back_val();
    auto Pair = Indices.insert(std::make_pair(MBB, 0));
    if (!Pair.second)
      continue;

    unsigned Index = MIB.getInstr()->getNumExplicitOperands() - 1;
    DEBUG(dbgs() << printMBBReference(*MBB) << " has index " << Index << "\n");

    Pair.first->second = Index;
    for (auto Pred : MBB->predecessors())
      RewriteSuccs.insert(Pred);

    MIB.addMBB(MBB);
    Dispatch->addSuccessor(MBB);

    MetaBlock Meta(MBB);
    for (auto *Succ : Meta.successors())
      if (Succ != Header && (!Loop || Loop->contains(Succ)))
        SuccWorklist.push_back(Succ);
  }

  // Rewrite the problematic successors for every block in RewriteSuccs.
  // For simplicity, we just introduce a new block for every edge we need to
  // rewrite. Fancier things are possible.
  for (MachineBasicBlock *MBB : RewriteSuccs) {
    DenseMap<MachineBasicBlock *, MachineBasicBlock *> Map;
    for (auto *Succ : MBB->successors()) {
      if (!Indices.count(Succ))
        continue;

      MachineBasicBlock *Split = MF.CreateMachineBasicBlock();
//.........这里部分代码省略.........
开发者ID:BNieuwenhuizen,项目名称:llvm,代码行数:101,代码来源:WebAssemblyFixIrreducibleControlFlow.cpp

示例5: UpdateCPSRUse

bool Thumb2SizeReduce::ReduceMBB(MachineBasicBlock &MBB) {
  bool Modified = false;

  // Yes, CPSR could be livein.
  bool LiveCPSR = MBB.isLiveIn(ARM::CPSR);
  MachineInstr *BundleMI = nullptr;

  CPSRDef = nullptr;
  HighLatencyCPSR = false;

  // Check predecessors for the latest CPSRDef.
  for (auto *Pred : MBB.predecessors()) {
    const MBBInfo &PInfo = BlockInfo[Pred->getNumber()];
    if (!PInfo.Visited) {
      // Since blocks are visited in RPO, this must be a back-edge.
      continue;
    }
    if (PInfo.HighLatencyCPSR) {
      HighLatencyCPSR = true;
      break;
    }
  }

  // If this BB loops back to itself, conservatively avoid narrowing the
  // first instruction that does partial flag update.
  bool IsSelfLoop = MBB.isSuccessor(&MBB);
  MachineBasicBlock::instr_iterator MII = MBB.instr_begin(),E = MBB.instr_end();
  MachineBasicBlock::instr_iterator NextMII;
  for (; MII != E; MII = NextMII) {
    NextMII = std::next(MII);

    MachineInstr *MI = &*MII;
    if (MI->isBundle()) {
      BundleMI = MI;
      continue;
    }
    if (MI->isDebugValue())
      continue;

    LiveCPSR = UpdateCPSRUse(*MI, LiveCPSR);

    // Does NextMII belong to the same bundle as MI?
    bool NextInSameBundle = NextMII != E && NextMII->isBundledWithPred();

    if (ReduceMI(MBB, MI, LiveCPSR, IsSelfLoop)) {
      Modified = true;
      MachineBasicBlock::instr_iterator I = std::prev(NextMII);
      MI = &*I;
      // Removing and reinserting the first instruction in a bundle will break
      // up the bundle. Fix the bundling if it was broken.
      if (NextInSameBundle && !NextMII->isBundledWithPred())
        NextMII->bundleWithPred();
    }

    if (!NextInSameBundle && MI->isInsideBundle()) {
      // FIXME: Since post-ra scheduler operates on bundles, the CPSR kill
      // marker is only on the BUNDLE instruction. Process the BUNDLE
      // instruction as we finish with the bundled instruction to work around
      // the inconsistency.
      if (BundleMI->killsRegister(ARM::CPSR))
        LiveCPSR = false;
      MachineOperand *MO = BundleMI->findRegisterDefOperand(ARM::CPSR);
      if (MO && !MO->isDead())
        LiveCPSR = true;
      MO = BundleMI->findRegisterUseOperand(ARM::CPSR);
      if (MO && !MO->isKill())
        LiveCPSR = true;
    }

    bool DefCPSR = false;
    LiveCPSR = UpdateCPSRDef(*MI, LiveCPSR, DefCPSR);
    if (MI->isCall()) {
      // Calls don't really set CPSR.
      CPSRDef = nullptr;
      HighLatencyCPSR = false;
      IsSelfLoop = false;
    } else if (DefCPSR) {
      // This is the last CPSR defining instruction.
      CPSRDef = MI;
      HighLatencyCPSR = isHighLatencyCPSR(CPSRDef);
      IsSelfLoop = false;
    }
  }

  MBBInfo &Info = BlockInfo[MBB.getNumber()];
  Info.HighLatencyCPSR = HighLatencyCPSR;
  Info.Visited = true;
  return Modified;
}
开发者ID:EdwardBetts,项目名称:expert-disco,代码行数:89,代码来源:Thumb2SizeReduction.cpp

示例6: updateSSA

// This is essentially the same iterative algorithm that SSAUpdater uses,
// except we already have a dominator tree, so we don't have to recompute it.
void LiveRangeCalc::updateSSA() {
  assert(Indexes && "Missing SlotIndexes");
  assert(DomTree && "Missing dominator tree");

  // Interate until convergence.
  bool Changed;
  do {
    Changed = false;
    // Propagate live-out values down the dominator tree, inserting phi-defs
    // when necessary.
    for (LiveInBlock &I : LiveIn) {
      MachineDomTreeNode *Node = I.DomNode;
      // Skip block if the live-in value has already been determined.
      if (!Node)
        continue;
      MachineBasicBlock *MBB = Node->getBlock();
      MachineDomTreeNode *IDom = Node->getIDom();
      LiveOutPair IDomValue;

      // We need a live-in value to a block with no immediate dominator?
      // This is probably an unreachable block that has survived somehow.
      bool needPHI = !IDom || !Seen.test(IDom->getBlock()->getNumber());

      // IDom dominates all of our predecessors, but it may not be their
      // immediate dominator. Check if any of them have live-out values that are
      // properly dominated by IDom. If so, we need a phi-def here.
      if (!needPHI) {
        IDomValue = Map[IDom->getBlock()];

        // Cache the DomTree node that defined the value.
        if (IDomValue.first && IDomValue.first != &UndefVNI &&
            !IDomValue.second) {
          Map[IDom->getBlock()].second = IDomValue.second =
            DomTree->getNode(Indexes->getMBBFromIndex(IDomValue.first->def));
        }

        for (MachineBasicBlock *Pred : MBB->predecessors()) {
          LiveOutPair &Value = Map[Pred];
          if (!Value.first || Value.first == IDomValue.first)
            continue;
          if (Value.first == &UndefVNI) {
            needPHI = true;
            break;
          }

          // Cache the DomTree node that defined the value.
          if (!Value.second)
            Value.second =
              DomTree->getNode(Indexes->getMBBFromIndex(Value.first->def));

          // This predecessor is carrying something other than IDomValue.
          // It could be because IDomValue hasn't propagated yet, or it could be
          // because MBB is in the dominance frontier of that value.
          if (DomTree->dominates(IDom, Value.second)) {
            needPHI = true;
            break;
          }
        }
      }

      // The value may be live-through even if Kill is set, as can happen when
      // we are called from extendRange. In that case LiveOutSeen is true, and
      // LiveOut indicates a foreign or missing value.
      LiveOutPair &LOP = Map[MBB];

      // Create a phi-def if required.
      if (needPHI) {
        Changed = true;
        assert(Alloc && "Need VNInfo allocator to create PHI-defs");
        SlotIndex Start, End;
        std::tie(Start, End) = Indexes->getMBBRange(MBB);
        LiveRange &LR = I.LR;
        VNInfo *VNI = LR.getNextValue(Start, *Alloc);
        I.Value = VNI;
        // This block is done, we know the final value.
        I.DomNode = nullptr;

        // Add liveness since updateFromLiveIns now skips this node.
        if (I.Kill.isValid()) {
          if (VNI)
            LR.addSegment(LiveInterval::Segment(Start, I.Kill, VNI));
        } else {
          if (VNI)
            LR.addSegment(LiveInterval::Segment(Start, End, VNI));
          LOP = LiveOutPair(VNI, Node);
        }
      } else if (IDomValue.first && IDomValue.first != &UndefVNI) {
        // No phi-def here. Remember incoming value.
        I.Value = IDomValue.first;

        // If the IDomValue is killed in the block, don't propagate through.
        if (I.Kill.isValid())
          continue;

        // Propagate IDomValue if it isn't killed:
        // MBB is live-out and doesn't define its own value.
        if (LOP.first == IDomValue.first)
          continue;
//.........这里部分代码省略.........
开发者ID:BNieuwenhuizen,项目名称:llvm,代码行数:101,代码来源:LiveRangeCalc.cpp

示例7: findReachingDefs

bool LiveRangeCalc::findReachingDefs(LiveRange &LR, MachineBasicBlock &UseMBB,
                                     SlotIndex Use, unsigned PhysReg,
                                     ArrayRef<SlotIndex> Undefs) {
  unsigned UseMBBNum = UseMBB.getNumber();

  // Block numbers where LR should be live-in.
  SmallVector<unsigned, 16> WorkList(1, UseMBBNum);

  // Remember if we have seen more than one value.
  bool UniqueVNI = true;
  VNInfo *TheVNI = nullptr;

  bool FoundUndef = false;

  // Using Seen as a visited set, perform a BFS for all reaching defs.
  for (unsigned i = 0; i != WorkList.size(); ++i) {
    MachineBasicBlock *MBB = MF->getBlockNumbered(WorkList[i]);

#ifndef NDEBUG
    if (MBB->pred_empty()) {
      MBB->getParent()->verify();
      errs() << "Use of " << printReg(PhysReg)
             << " does not have a corresponding definition on every path:\n";
      const MachineInstr *MI = Indexes->getInstructionFromIndex(Use);
      if (MI != nullptr)
        errs() << Use << " " << *MI;
      report_fatal_error("Use not jointly dominated by defs.");
    }

    if (TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
        !MBB->isLiveIn(PhysReg)) {
      MBB->getParent()->verify();
      const TargetRegisterInfo *TRI = MRI->getTargetRegisterInfo();
      errs() << "The register " << printReg(PhysReg, TRI)
             << " needs to be live in to " << printMBBReference(*MBB)
             << ", but is missing from the live-in list.\n";
      report_fatal_error("Invalid global physical register");
    }
#endif
    FoundUndef |= MBB->pred_empty();

    for (MachineBasicBlock *Pred : MBB->predecessors()) {
       // Is this a known live-out block?
       if (Seen.test(Pred->getNumber())) {
         if (VNInfo *VNI = Map[Pred].first) {
           if (TheVNI && TheVNI != VNI)
             UniqueVNI = false;
           TheVNI = VNI;
         }
         continue;
       }

       SlotIndex Start, End;
       std::tie(Start, End) = Indexes->getMBBRange(Pred);

       // First time we see Pred.  Try to determine the live-out value, but set
       // it as null if Pred is live-through with an unknown value.
       auto EP = LR.extendInBlock(Undefs, Start, End);
       VNInfo *VNI = EP.first;
       FoundUndef |= EP.second;
       setLiveOutValue(Pred, EP.second ? &UndefVNI : VNI);
       if (VNI) {
         if (TheVNI && TheVNI != VNI)
           UniqueVNI = false;
         TheVNI = VNI;
       }
       if (VNI || EP.second)
         continue;

       // No, we need a live-in value for Pred as well
       if (Pred != &UseMBB)
         WorkList.push_back(Pred->getNumber());
       else
          // Loopback to UseMBB, so value is really live through.
         Use = SlotIndex();
    }
  }

  LiveIn.clear();
  FoundUndef |= (TheVNI == nullptr || TheVNI == &UndefVNI);
  if (!Undefs.empty() && FoundUndef)
    UniqueVNI = false;

  // Both updateSSA() and LiveRangeUpdater benefit from ordered blocks, but
  // neither require it. Skip the sorting overhead for small updates.
  if (WorkList.size() > 4)
    array_pod_sort(WorkList.begin(), WorkList.end());

  // If a unique reaching def was found, blit in the live ranges immediately.
  if (UniqueVNI) {
    assert(TheVNI != nullptr && TheVNI != &UndefVNI);
    LiveRangeUpdater Updater(&LR);
    for (unsigned BN : WorkList) {
      SlotIndex Start, End;
      std::tie(Start, End) = Indexes->getMBBRange(BN);
      // Trim the live range in UseMBB.
      if (BN == UseMBBNum && Use.isValid())
        End = Use;
      else
        Map[MF->getBlockNumbered(BN)] = LiveOutPair(TheVNI, nullptr);
//.........这里部分代码省略.........
开发者ID:BNieuwenhuizen,项目名称:llvm,代码行数:101,代码来源:LiveRangeCalc.cpp

示例8: isDefOnEntry

bool LiveRangeCalc::isDefOnEntry(LiveRange &LR, ArrayRef<SlotIndex> Undefs,
                                 MachineBasicBlock &MBB, BitVector &DefOnEntry,
                                 BitVector &UndefOnEntry) {
  unsigned BN = MBB.getNumber();
  if (DefOnEntry[BN])
    return true;
  if (UndefOnEntry[BN])
    return false;

  auto MarkDefined = [BN, &DefOnEntry](MachineBasicBlock &B) -> bool {
    for (MachineBasicBlock *S : B.successors())
      DefOnEntry[S->getNumber()] = true;
    DefOnEntry[BN] = true;
    return true;
  };

  SetVector<unsigned> WorkList;
  // Checking if the entry of MBB is reached by some def: add all predecessors
  // that are potentially defined-on-exit to the work list.
  for (MachineBasicBlock *P : MBB.predecessors())
    WorkList.insert(P->getNumber());

  for (unsigned i = 0; i != WorkList.size(); ++i) {
    // Determine if the exit from the block is reached by some def.
    unsigned N = WorkList[i];
    MachineBasicBlock &B = *MF->getBlockNumbered(N);
    if (Seen[N]) {
      const LiveOutPair &LOB = Map[&B];
      if (LOB.first != nullptr && LOB.first != &UndefVNI)
        return MarkDefined(B);
    }
    SlotIndex Begin, End;
    std::tie(Begin, End) = Indexes->getMBBRange(&B);
    // Treat End as not belonging to B.
    // If LR has a segment S that starts at the next block, i.e. [End, ...),
    // std::upper_bound will return the segment following S. Instead,
    // S should be treated as the first segment that does not overlap B.
    LiveRange::iterator UB = std::upper_bound(LR.begin(), LR.end(),
                                              End.getPrevSlot());
    if (UB != LR.begin()) {
      LiveRange::Segment &Seg = *std::prev(UB);
      if (Seg.end > Begin) {
        // There is a segment that overlaps B. If the range is not explicitly
        // undefined between the end of the segment and the end of the block,
        // treat the block as defined on exit. If it is, go to the next block
        // on the work list.
        if (LR.isUndefIn(Undefs, Seg.end, End))
          continue;
        return MarkDefined(B);
      }
    }

    // No segment overlaps with this block. If this block is not defined on
    // entry, or it undefines the range, do not process its predecessors.
    if (UndefOnEntry[N] || LR.isUndefIn(Undefs, Begin, End)) {
      UndefOnEntry[N] = true;
      continue;
    }
    if (DefOnEntry[N])
      return MarkDefined(B);

    // Still don't know: add all predecessors to the work list.
    for (MachineBasicBlock *P : B.predecessors())
      WorkList.insert(P->getNumber());
  }

  UndefOnEntry[BN] = true;
  return false;
}
开发者ID:BNieuwenhuizen,项目名称:llvm,代码行数:69,代码来源:LiveRangeCalc.cpp

示例9: updateDeadsInRange

void HexagonExpandCondsets::updateDeadsInRange(unsigned Reg, LaneBitmask LM,
      LiveRange &Range) {
  assert(TargetRegisterInfo::isVirtualRegister(Reg));
  if (Range.empty())
    return;

  // Return two booleans: { def-modifes-reg, def-covers-reg }.
  auto IsRegDef = [this,Reg,LM] (MachineOperand &Op) -> std::pair<bool,bool> {
    if (!Op.isReg() || !Op.isDef())
      return { false, false };
    unsigned DR = Op.getReg(), DSR = Op.getSubReg();
    if (!TargetRegisterInfo::isVirtualRegister(DR) || DR != Reg)
      return { false, false };
    LaneBitmask SLM = getLaneMask(DR, DSR);
    LaneBitmask A = SLM & LM;
    return { A.any(), A == SLM };
  };

  // The splitting step will create pairs of predicated definitions without
  // any implicit uses (since implicit uses would interfere with predication).
  // This can cause the reaching defs to become dead after live range
  // recomputation, even though they are not really dead.
  // We need to identify predicated defs that need implicit uses, and
  // dead defs that are not really dead, and correct both problems.

  auto Dominate = [this] (SetVector<MachineBasicBlock*> &Defs,
                          MachineBasicBlock *Dest) -> bool {
    for (MachineBasicBlock *D : Defs)
      if (D != Dest && MDT->dominates(D, Dest))
        return true;

    MachineBasicBlock *Entry = &Dest->getParent()->front();
    SetVector<MachineBasicBlock*> Work(Dest->pred_begin(), Dest->pred_end());
    for (unsigned i = 0; i < Work.size(); ++i) {
      MachineBasicBlock *B = Work[i];
      if (Defs.count(B))
        continue;
      if (B == Entry)
        return false;
      for (auto *P : B->predecessors())
        Work.insert(P);
    }
    return true;
  };

  // First, try to extend live range within individual basic blocks. This
  // will leave us only with dead defs that do not reach any predicated
  // defs in the same block.
  SetVector<MachineBasicBlock*> Defs;
  SmallVector<SlotIndex,4> PredDefs;
  for (auto &Seg : Range) {
    if (!Seg.start.isRegister())
      continue;
    MachineInstr *DefI = LIS->getInstructionFromIndex(Seg.start);
    Defs.insert(DefI->getParent());
    if (HII->isPredicated(*DefI))
      PredDefs.push_back(Seg.start);
  }

  SmallVector<SlotIndex,8> Undefs;
  LiveInterval &LI = LIS->getInterval(Reg);
  LI.computeSubRangeUndefs(Undefs, LM, *MRI, *LIS->getSlotIndexes());

  for (auto &SI : PredDefs) {
    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    auto P = Range.extendInBlock(Undefs, LIS->getMBBStartIdx(BB), SI);
    if (P.first != nullptr || P.second)
      SI = SlotIndex();
  }

  // Calculate reachability for those predicated defs that were not handled
  // by the in-block extension.
  SmallVector<SlotIndex,4> ExtTo;
  for (auto &SI : PredDefs) {
    if (!SI.isValid())
      continue;
    MachineBasicBlock *BB = LIS->getMBBFromIndex(SI);
    if (BB->pred_empty())
      continue;
    // If the defs from this range reach SI via all predecessors, it is live.
    // It can happen that SI is reached by the defs through some paths, but
    // not all. In the IR coming into this optimization, SI would not be
    // considered live, since the defs would then not jointly dominate SI.
    // That means that SI is an overwriting def, and no implicit use is
    // needed at this point. Do not add SI to the extension points, since
    // extendToIndices will abort if there is no joint dominance.
    // If the abort was avoided by adding extra undefs added to Undefs,
    // extendToIndices could actually indicate that SI is live, contrary
    // to the original IR.
    if (Dominate(Defs, BB))
      ExtTo.push_back(SI);
  }

  if (!ExtTo.empty())
    LIS->extendToIndices(Range, ExtTo, Undefs);

  // Remove <dead> flags from all defs that are not dead after live range
  // extension, and collect all def operands. They will be used to generate
  // the necessary implicit uses.
  // At the same time, add <dead> flag to all defs that are actually dead.
//.........这里部分代码省略.........
开发者ID:Leedehai,项目名称:llvm,代码行数:101,代码来源:HexagonExpandCondsets.cpp

示例10: applySplitCriticalEdges

void MachineDominatorTree::applySplitCriticalEdges() const {
  // Bail out early if there is nothing to do.
  if (CriticalEdgesToSplit.empty())
    return;

  // For each element in CriticalEdgesToSplit, remember whether or not element
  // is the new immediate domminator of its successor. The mapping is done by
  // index, i.e., the information for the ith element of CriticalEdgesToSplit is
  // the ith element of IsNewIDom.
  SmallBitVector IsNewIDom(CriticalEdgesToSplit.size(), true);
  size_t Idx = 0;

  // Collect all the dominance properties info, before invalidating
  // the underlying DT.
  for (CriticalEdge &Edge : CriticalEdgesToSplit) {
    // Update dominator information.
    MachineBasicBlock *Succ = Edge.ToBB;
    MachineDomTreeNode *SuccDTNode = DT->getNode(Succ);

    for (MachineBasicBlock *PredBB : Succ->predecessors()) {
      if (PredBB == Edge.NewBB)
        continue;
      // If we are in this situation:
      // FromBB1        FromBB2
      //    +              +
      //   + +            + +
      //  +   +          +   +
      // ...  Split1  Split2 ...
      //           +   +
      //            + +
      //             +
      //            Succ
      // Instead of checking the domiance property with Split2, we check it with
      // FromBB2 since Split2 is still unknown of the underlying DT structure.
      if (NewBBs.count(PredBB)) {
        assert(PredBB->pred_size() == 1 && "A basic block resulting from a "
                                           "critical edge split has more "
                                           "than one predecessor!");
        PredBB = *PredBB->pred_begin();
      }
      if (!DT->dominates(SuccDTNode, DT->getNode(PredBB))) {
        IsNewIDom[Idx] = false;
        break;
      }
    }
    ++Idx;
  }

  // Now, update DT with the collected dominance properties info.
  Idx = 0;
  for (CriticalEdge &Edge : CriticalEdgesToSplit) {
    // We know FromBB dominates NewBB.
    MachineDomTreeNode *NewDTNode = DT->addNewBlock(Edge.NewBB, Edge.FromBB);

    // If all the other predecessors of "Succ" are dominated by "Succ" itself
    // then the new block is the new immediate dominator of "Succ". Otherwise,
    // the new block doesn't dominate anything.
    if (IsNewIDom[Idx])
      DT->changeImmediateDominator(DT->getNode(Edge.ToBB), NewDTNode);
    ++Idx;
  }
  NewBBs.clear();
  CriticalEdgesToSplit.clear();
}
开发者ID:dberlin,项目名称:llvm-gvn-rewrite,代码行数:64,代码来源:MachineDominators.cpp


注:本文中的MachineBasicBlock::predecessors方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。