點幾何用於創建散點圖。散點圖對於顯示兩個連續變量之間的關係最有用。它可用於比較一個連續變量和一個分類變量,或兩個分類變量,但 geom_jitter()
、 geom_count()
或 geom_bin2d()
等變體通常更合適。氣泡圖是一個散點圖,其中第三個變量映射到點的大小。
用法
geom_point(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
參數
- mapping
-
由
aes()
創建的一組美學映射。如果指定且inherit.aes = TRUE
(默認),它將與繪圖頂層的默認映射組合。如果沒有繪圖映射,則必須提供mapping
。 - data
-
該層要顯示的數據。有以下三種選擇:
如果默認為
NULL
,則數據繼承自ggplot()
調用中指定的繪圖數據。data.frame
或其他對象將覆蓋繪圖數據。所有對象都將被強化以生成 DataFrame 。請參閱fortify()
將為其創建變量。將使用單個參數(繪圖數據)調用
function
。返回值必須是data.frame
,並將用作圖層數據。可以從formula
創建function
(例如~ head(.x, 10)
)。 - stat
-
用於該層數據的統計變換,可以作為
ggproto
Geom
子類,也可以作為命名去掉stat_
前綴的統計數據的字符串(例如"count"
而不是"stat_count"
) - position
-
位置調整,可以是命名調整的字符串(例如
"jitter"
使用position_jitter
),也可以是調用位置調整函數的結果。如果需要更改調整設置,請使用後者。 - ...
-
其他參數傳遞給
layer()
。這些通常是美學,用於將美學設置為固定值,例如colour = "red"
或size = 3
。它們也可能是配對的 geom/stat 的參數。 - na.rm
-
如果
FALSE
,則默認缺失值將被刪除並帶有警告。如果TRUE
,缺失值將被靜默刪除。 - show.legend
-
合乎邏輯的。該層是否應該包含在圖例中?
NA
(默認值)包括是否映射了任何美學。FALSE
從不包含,而TRUE
始終包含。它也可以是一個命名的邏輯向量,以精細地選擇要顯示的美學。 - inherit.aes
-
如果
FALSE
,則覆蓋默認美學,而不是與它們組合。這對於定義數據和美觀的輔助函數最有用,並且不應繼承默認繪圖規範的行為,例如borders()
。
過度繪圖
散點圖最大的潛在問題是過度繪製:隻要有多個點,點就可能會繪製在另一個點之上。這會嚴重扭曲情節的視覺外觀。這個問題沒有單一的解決方案,但有一些技術可以提供幫助。您可以使用 geom_smooth()
、 geom_quantile()
或 geom_density_2d()
添加附加信息。如果您幾乎沒有唯一的 x
值,geom_boxplot()
也可能有用。
或者,您可以使用 geom_count()
、 geom_hex()
或 geom_density2d()
匯總每個位置的點數並以某種方式顯示。
另一種技術是使點透明(例如 geom_point(alpha = 0.05)
)或非常小(例如 geom_point(shape = ".")
)。
美學
geom_point()
理解以下美學(所需的美學以粗體顯示):
-
x
-
y
-
alpha
-
colour
-
fill
-
group
-
shape
-
size
-
stroke
在 vignette("ggplot2-specs")
中了解有關設置這些美學的更多信息。
例子
p <- ggplot(mtcars, aes(wt, mpg))
p + geom_point()
# Add aesthetic mappings
p + geom_point(aes(colour = factor(cyl)))
p + geom_point(aes(shape = factor(cyl)))
# A "bubblechart":
p + geom_point(aes(size = qsec))
# Set aesthetics to fixed value
ggplot(mtcars, aes(wt, mpg)) + geom_point(colour = "red", size = 3)
# \donttest{
# Varying alpha is useful for large datasets
d <- ggplot(diamonds, aes(carat, price))
d + geom_point(alpha = 1/10)
d + geom_point(alpha = 1/20)
d + geom_point(alpha = 1/100)
# }
# For shapes that have a border (like 21), you can colour the inside and
# outside separately. Use the stroke aesthetic to modify the width of the
# border
ggplot(mtcars, aes(wt, mpg)) +
geom_point(shape = 21, colour = "black", fill = "white", size = 5, stroke = 5)
# \donttest{
# You can create interesting shapes by layering multiple points of
# different sizes
p <- ggplot(mtcars, aes(mpg, wt, shape = factor(cyl)))
p +
geom_point(aes(colour = factor(cyl)), size = 4) +
geom_point(colour = "grey90", size = 1.5)
p +
geom_point(colour = "black", size = 4.5) +
geom_point(colour = "pink", size = 4) +
geom_point(aes(shape = factor(cyl)))
# geom_point warns when missing values have been dropped from the data set
# and not plotted, you can turn this off by setting na.rm = TRUE
set.seed(1)
mtcars2 <- transform(mtcars, mpg = ifelse(runif(32) < 0.2, NA, mpg))
ggplot(mtcars2, aes(wt, mpg)) +
geom_point()
#> Warning: Removed 4 rows containing missing values (`geom_point()`).
ggplot(mtcars2, aes(wt, mpg)) +
geom_point(na.rm = TRUE)
# }
相關用法
- R ggplot2 geom_polygon 多邊形
- R ggplot2 geom_path 連接觀察結果
- R ggplot2 geom_qq 分位數-分位數圖
- R ggplot2 geom_spoke 由位置、方向和距離參數化的線段
- R ggplot2 geom_quantile 分位數回歸
- R ggplot2 geom_text 文本
- R ggplot2 geom_ribbon 函數區和麵積圖
- R ggplot2 geom_boxplot 盒須圖(Tukey 風格)
- R ggplot2 geom_hex 二維箱計數的六邊形熱圖
- R ggplot2 geom_bar 條形圖
- R ggplot2 geom_bin_2d 二維 bin 計數熱圖
- R ggplot2 geom_jitter 抖動點
- R ggplot2 geom_linerange 垂直間隔:線、橫線和誤差線
- R ggplot2 geom_blank 什麽也不畫
- R ggplot2 geom_violin 小提琴情節
- R ggplot2 geom_dotplot 點圖
- R ggplot2 geom_errorbarh 水平誤差線
- R ggplot2 geom_function 將函數繪製為連續曲線
- R ggplot2 geom_histogram 直方圖和頻數多邊形
- R ggplot2 geom_tile 矩形
- R ggplot2 geom_segment 線段和曲線
- R ggplot2 geom_density_2d 二維密度估計的等值線
- R ggplot2 geom_map 參考Map中的多邊形
- R ggplot2 geom_density 平滑密度估計
- R ggplot2 geom_abline 參考線:水平、垂直和對角線
注:本文由純淨天空篩選整理自Hadley Wickham等大神的英文原創作品 Points。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。