geom_rect()
和 geom_tile()
執行相同的操作,但參數化不同: geom_rect()
使用四個角的位置( xmin
、 xmax
、 ymin
和 ymax
),而 geom_tile()
使用圖塊的中心及其大小( x
、 y
、 width
、 height
)。 geom_raster()
是所有圖塊大小相同時的高性能特殊情況。
用法
geom_raster(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
hjust = 0.5,
vjust = 0.5,
interpolate = FALSE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_rect(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_tile(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
linejoin = "mitre",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
參數
- mapping
-
由
aes()
創建的一組美學映射。如果指定且inherit.aes = TRUE
(默認),它將與繪圖頂層的默認映射組合。如果沒有繪圖映射,則必須提供mapping
。 - data
-
該層要顯示的數據。有以下三種選擇:
如果默認為
NULL
,則數據繼承自ggplot()
調用中指定的繪圖數據。data.frame
或其他對象將覆蓋繪圖數據。所有對象都將被強化以生成 DataFrame 。請參閱fortify()
將為其創建變量。將使用單個參數(繪圖數據)調用
function
。返回值必須是data.frame
,並將用作圖層數據。可以從formula
創建function
(例如~ head(.x, 10)
)。 - stat
-
用於該層數據的統計變換,可以作為
ggproto
Geom
子類,也可以作為命名去掉stat_
前綴的統計數據的字符串(例如"count"
而不是"stat_count"
) - position
-
位置調整,可以是命名調整的字符串(例如
"jitter"
使用position_jitter
),也可以是調用位置調整函數的結果。如果需要更改調整設置,請使用後者。 - ...
-
其他參數傳遞給
layer()
。這些通常是美學,用於將美學設置為固定值,例如colour = "red"
或size = 3
。它們也可能是配對的 geom/stat 的參數。 - hjust, vjust
-
grob 的水平和垂直對齊。每個調整值應為 0 到 1 之間的數字。兩者均默認為 0.5,使每個像素在其數據位置上居中。
- interpolate
-
如果
TRUE
線性插值,如果FALSE
(默認)不插值。 - na.rm
-
如果
FALSE
,則默認缺失值將被刪除並帶有警告。如果TRUE
,缺失值將被靜默刪除。 - show.legend
-
合乎邏輯的。該層是否應該包含在圖例中?
NA
(默認值)包括是否映射了任何美學。FALSE
從不包含,而TRUE
始終包含。它也可以是一個命名的邏輯向量,以精細地選擇要顯示的美學。 - inherit.aes
-
如果
FALSE
,則覆蓋默認美學,而不是與它們組合。這對於定義數據和美觀的輔助函數最有用,並且不應繼承默認繪圖規範的行為,例如borders()
。 - linejoin
-
線連接樣式(圓形、斜接、斜角)。
美學
geom_tile()
理解以下美學(所需的美學以粗體顯示):
-
x
-
y
-
alpha
-
colour
-
fill
-
group
-
height
-
linetype
-
linewidth
-
width
請注意, geom_raster()
忽略 colour
。
在 vignette("ggplot2-specs")
中了解有關設置這些美學的更多信息。
例子
# The most common use for rectangles is to draw a surface. You always want
# to use geom_raster here because it's so much faster, and produces
# smaller output when saving to PDF
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density))
# Interpolation smooths the surface & is most helpful when rendering images.
ggplot(faithfuld, aes(waiting, eruptions)) +
geom_raster(aes(fill = density), interpolate = TRUE)
# If you want to draw arbitrary rectangles, use geom_tile() or geom_rect()
df <- data.frame(
x = rep(c(2, 5, 7, 9, 12), 2),
y = rep(c(1, 2), each = 5),
z = factor(rep(1:5, each = 2)),
w = rep(diff(c(0, 4, 6, 8, 10, 14)), 2)
)
ggplot(df, aes(x, y)) +
geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(x, y, width = w)) +
geom_tile(aes(fill = z), colour = "grey50")
ggplot(df, aes(xmin = x - w / 2, xmax = x + w / 2, ymin = y, ymax = y + 1)) +
geom_rect(aes(fill = z), colour = "grey50")
# \donttest{
# Justification controls where the cells are anchored
df <- expand.grid(x = 0:5, y = 0:5)
set.seed(1)
df$z <- runif(nrow(df))
# default is compatible with geom_tile()
ggplot(df, aes(x, y, fill = z)) +
geom_raster()
# zero padding
ggplot(df, aes(x, y, fill = z)) +
geom_raster(hjust = 0, vjust = 0)
# Inspired by the image-density plots of Ken Knoblauch
cars <- ggplot(mtcars, aes(mpg, factor(cyl)))
cars + geom_point()
cars + stat_bin2d(aes(fill = after_stat(count)), binwidth = c(3,1))
cars + stat_bin2d(aes(fill = after_stat(density)), binwidth = c(3,1))
cars +
stat_density(
aes(fill = after_stat(density)),
geom = "raster",
position = "identity"
)
cars +
stat_density(
aes(fill = after_stat(count)),
geom = "raster",
position = "identity"
)
# }
相關用法
- R ggplot2 geom_text 文本
- R ggplot2 geom_qq 分位數-分位數圖
- R ggplot2 geom_spoke 由位置、方向和距離參數化的線段
- R ggplot2 geom_quantile 分位數回歸
- R ggplot2 geom_ribbon 函數區和麵積圖
- R ggplot2 geom_boxplot 盒須圖(Tukey 風格)
- R ggplot2 geom_hex 二維箱計數的六邊形熱圖
- R ggplot2 geom_bar 條形圖
- R ggplot2 geom_bin_2d 二維 bin 計數熱圖
- R ggplot2 geom_jitter 抖動點
- R ggplot2 geom_point 積分
- R ggplot2 geom_linerange 垂直間隔:線、橫線和誤差線
- R ggplot2 geom_blank 什麽也不畫
- R ggplot2 geom_path 連接觀察結果
- R ggplot2 geom_violin 小提琴情節
- R ggplot2 geom_dotplot 點圖
- R ggplot2 geom_errorbarh 水平誤差線
- R ggplot2 geom_function 將函數繪製為連續曲線
- R ggplot2 geom_polygon 多邊形
- R ggplot2 geom_histogram 直方圖和頻數多邊形
- R ggplot2 geom_segment 線段和曲線
- R ggplot2 geom_density_2d 二維密度估計的等值線
- R ggplot2 geom_map 參考Map中的多邊形
- R ggplot2 geom_density 平滑密度估計
- R ggplot2 geom_abline 參考線:水平、垂直和對角線
注:本文由純淨天空篩選整理自Hadley Wickham等大神的英文原創作品 Rectangles。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。