geom_path()
按照觀測值在數據中出現的順序連接它們。 geom_line()
按照 x 軸上的變量順序將它們連接起來。 geom_step()
創建一個階梯圖,準確突出顯示更改發生的時間。 group
美學決定了哪些案例連接在一起。
用法
geom_path(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
...,
lineend = "butt",
linejoin = "round",
linemitre = 10,
arrow = NULL,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE
)
geom_line(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
na.rm = FALSE,
orientation = NA,
show.legend = NA,
inherit.aes = TRUE,
...
)
geom_step(
mapping = NULL,
data = NULL,
stat = "identity",
position = "identity",
direction = "hv",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE,
...
)
參數
- mapping
-
由
aes()
創建的一組美學映射。如果指定且inherit.aes = TRUE
(默認),它將與繪圖頂層的默認映射組合。如果沒有繪圖映射,則必須提供mapping
。 - data
-
該層要顯示的數據。有以下三種選擇:
如果默認為
NULL
,則數據繼承自ggplot()
調用中指定的繪圖數據。data.frame
或其他對象將覆蓋繪圖數據。所有對象都將被強化以生成 DataFrame 。請參閱fortify()
將為其創建變量。將使用單個參數(繪圖數據)調用
function
。返回值必須是data.frame
,並將用作圖層數據。可以從formula
創建function
(例如~ head(.x, 10)
)。 - stat
-
用於該層數據的統計變換,可以作為
ggproto
Geom
子類,也可以作為命名去掉stat_
前綴的統計數據的字符串(例如"count"
而不是"stat_count"
) - position
-
位置調整,可以是命名調整的字符串(例如
"jitter"
使用position_jitter
),也可以是調用位置調整函數的結果。如果需要更改調整設置,請使用後者。 - ...
-
其他參數傳遞給
layer()
。這些通常是美學,用於將美學設置為固定值,例如colour = "red"
或size = 3
。它們也可能是配對的 geom/stat 的參數。 - lineend
-
線端樣式(圓形、對接、方形)。
- linejoin
-
線連接樣式(圓形、斜接、斜角)。
- linemitre
-
線斜接限製(數量大於 1)。
- arrow
-
箭頭規範,由
grid::arrow()
創建。 - na.rm
-
如果
FALSE
,則默認缺失值將被刪除並帶有警告。如果TRUE
,缺失值將被靜默刪除。 - show.legend
-
合乎邏輯的。該層是否應該包含在圖例中?
NA
(默認值)包括是否映射了任何美學。FALSE
從不包含,而TRUE
始終包含。它也可以是一個命名的邏輯向量,以精細地選擇要顯示的美學。 - inherit.aes
-
如果
FALSE
,則覆蓋默認美學,而不是與它們組合。這對於定義數據和美觀的輔助函數最有用,並且不應繼承默認繪圖規範的行為,例如borders()
。 - orientation
-
層的方向。默認值 (
NA
) 自動根據美學映射確定方向。萬一失敗,可以通過將orientation
設置為"x"
或"y"
來顯式給出。有關更多詳細信息,請參閱方向部分。 - direction
-
樓梯方向:'vh'表示垂直然後水平,'hv'表示水平然後垂直,或'mid'表示相鄰x-values之間的台階half-way。
細節
另一種參數化是 geom_segment()
,其中每行對應一個提供開始和結束坐標的案例。
方向
該幾何體以不同的方式對待每個軸,因此可以有兩個方向。通常,方向很容易從給定映射和使用的位置比例類型的組合中推斷出來。因此,ggplot2 默認情況下會嘗試猜測圖層應具有哪個方向。在極少數情況下,方向不明確,猜測可能會失敗。在這種情況下,可以直接使用 orientation
參數指定方向,該參數可以是 "x"
或 "y"
。該值給出了幾何圖形應沿著的軸,"x"
是您期望的幾何圖形的默認方向。
美學
geom_path()
理解以下美學(所需的美學以粗體顯示):
-
x
-
y
-
alpha
-
colour
-
group
-
linetype
-
linewidth
在 vignette("ggplot2-specs")
中了解有關設置這些美學的更多信息。
缺失值處理
geom_path()
、 geom_line()
和 geom_step()
處理 NA
如下:
-
如果
NA
出現在一行的中間,則會中斷該行。無論na.rm
是TRUE
還是FALSE
,都不會顯示警告。 -
如果
NA
出現在行的開頭或結尾,並且na.rm
是FALSE
(默認),則刪除NA
並發出警告。 -
如果
NA
出現在行的開頭或結尾,並且na.rm
是TRUE
,則NA
將被靜默刪除,而不發出警告。
也可以看看
geom_polygon()
:填充路徑(多邊形); geom_segment()
:線段
例子
# geom_line() is suitable for time series
ggplot(economics, aes(date, unemploy)) + geom_line()
ggplot(economics_long, aes(date, value01, colour = variable)) +
geom_line()
# You can get a timeseries that run vertically by setting the orientation
ggplot(economics, aes(unemploy, date)) + geom_line(orientation = "y")
# geom_step() is useful when you want to highlight exactly when
# the y value changes
recent <- economics[economics$date > as.Date("2013-01-01"), ]
ggplot(recent, aes(date, unemploy)) + geom_line()
ggplot(recent, aes(date, unemploy)) + geom_step()
# geom_path lets you explore how two variables are related over time,
# e.g. unemployment and personal savings rate
m <- ggplot(economics, aes(unemploy/pop, psavert))
m + geom_path()
m + geom_path(aes(colour = as.numeric(date)))
# Changing parameters ----------------------------------------------
ggplot(economics, aes(date, unemploy)) +
geom_line(colour = "red")
# Use the arrow parameter to add an arrow to the line
# See ?arrow for more details
c <- ggplot(economics, aes(x = date, y = pop))
c + geom_line(arrow = arrow())
c + geom_line(
arrow = arrow(angle = 15, ends = "both", type = "closed")
)
# Control line join parameters
df <- data.frame(x = 1:3, y = c(4, 1, 9))
base <- ggplot(df, aes(x, y))
base + geom_path(linewidth = 10)
base + geom_path(linewidth = 10, lineend = "round")
base + geom_path(linewidth = 10, linejoin = "mitre", lineend = "butt")
# You can use NAs to break the line.
df <- data.frame(x = 1:5, y = c(1, 2, NA, 4, 5))
ggplot(df, aes(x, y)) + geom_point() + geom_line()
#> Warning: Removed 1 rows containing missing values (`geom_point()`).
# \donttest{
# Setting line type vs colour/size
# Line type needs to be applied to a line as a whole, so it can
# not be used with colour or size that vary across a line
x <- seq(0.01, .99, length.out = 100)
df <- data.frame(
x = rep(x, 2),
y = c(qlogis(x), 2 * qlogis(x)),
group = rep(c("a","b"),
each = 100)
)
p <- ggplot(df, aes(x=x, y=y, group=group))
# These work
p + geom_line(linetype = 2)
p + geom_line(aes(colour = group), linetype = 2)
p + geom_line(aes(colour = x))
# But this doesn't
should_stop(p + geom_line(aes(colour = x), linetype=2))
# }
相關用法
- R ggplot2 geom_point 積分
- R ggplot2 geom_polygon 多邊形
- R ggplot2 geom_qq 分位數-分位數圖
- R ggplot2 geom_spoke 由位置、方向和距離參數化的線段
- R ggplot2 geom_quantile 分位數回歸
- R ggplot2 geom_text 文本
- R ggplot2 geom_ribbon 函數區和麵積圖
- R ggplot2 geom_boxplot 盒須圖(Tukey 風格)
- R ggplot2 geom_hex 二維箱計數的六邊形熱圖
- R ggplot2 geom_bar 條形圖
- R ggplot2 geom_bin_2d 二維 bin 計數熱圖
- R ggplot2 geom_jitter 抖動點
- R ggplot2 geom_linerange 垂直間隔:線、橫線和誤差線
- R ggplot2 geom_blank 什麽也不畫
- R ggplot2 geom_violin 小提琴情節
- R ggplot2 geom_dotplot 點圖
- R ggplot2 geom_errorbarh 水平誤差線
- R ggplot2 geom_function 將函數繪製為連續曲線
- R ggplot2 geom_histogram 直方圖和頻數多邊形
- R ggplot2 geom_tile 矩形
- R ggplot2 geom_segment 線段和曲線
- R ggplot2 geom_density_2d 二維密度估計的等值線
- R ggplot2 geom_map 參考Map中的多邊形
- R ggplot2 geom_density 平滑密度估計
- R ggplot2 geom_abline 參考線:水平、垂直和對角線
注:本文由純淨天空篩選整理自Hadley Wickham等大神的英文原創作品 Connect observations。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。