當前位置: 首頁>>代碼示例 >>用法及示例精選 >>正文


Python SciPy interpolate.splrep用法及代碼示例


本文簡要介紹 python 語言中 scipy.interpolate.splrep 的用法。

用法:

scipy.interpolate.splrep(x, y, w=None, xb=None, xe=None, k=3, task=0, s=None, t=None, full_output=0, per=0, quiet=1)#

找到一維曲線的B-spline 表示。

給定一組數據點 (x[i], y[i]) 確定區間 xb <= x <= xe 上 k 度的平滑樣條近似。

參數

x, y array_like

定義曲線 y = f(x) 的數據點。

w 數組,可選

嚴格正的 1 階權重數組,其長度與 x 和 y 相同。權重用於計算加權最小二乘樣條擬合。如果 y 值中的誤差具有由向量 d 給出的標準差,則 w 應為 1/d。默認值為ones(len(x))。

xb, xe 浮點數,可選

適合的間隔。如果沒有,它們分別默認為 x[0] 和 x[-1]。

k 整數,可選

樣條擬合的程度。建議使用三次樣條。應避免使用偶數 k 值,尤其是在 s 值較小的情況下。 1 <= k <= 5

task {1, 0, -1},可選

如果 task==0 找到給定平滑因子 s 的 t 和 c。

如果 task==1 找到 t 和 c 以獲得平滑因子的另一個值,s。對於同一組數據,之前必須有一個 task=0 或 task=1 的調用(t 將被存儲在內部使用)

如果 task=-1 找到給定節點集 t 的加權最小二乘樣條。這些應該是內部結,因為末端的結將自動添加。

s 浮點數,可選

平滑條件。平滑度通過滿足以下條件來確定:sum((w * (y - g))**2,axis=0) <= s,其中 g(x) 是 (x,y) 的平滑插值。用戶可以使用 s 來控製貼合的緊密度和平滑度之間的權衡。較大的 s 意味著更多的平滑,而較小的 s 值表明更少的平滑。 s 的推薦值取決於權重 w。如果權重表示 y 標準差的倒數,則應在 (m-sqrt(2*m),m+sqrt(2*m)) 範圍內找到良好的 s 值,其中 m 是x、y 和 w 中的數據點。默認值:如果提供了權重,則 s=m-sqrt(2*m)。如果未提供權重,則 s = 0.0(插值)。

t 數組,可選

任務所需的結=-1。如果給定,則任務自動設置為-1。

full_output 布爾型,可選

如果非零,則返回可選輸出。

per 布爾型,可選

如果非零,則認為數據點是周期性的,周期為 x[m-1] - x[0],並返回平滑的周期性樣條近似。不使用 y[m-1] 和 w[m-1] 的值。

quiet 布爾型,可選

非零抑製消息。

返回

tck 元組

一個元組 (t,c,k),包含節點向量、B-spline 係數和樣條曲線的度數。

fp 數組,可選

樣條近似的殘差平方和的加權和。

ier 整數,可選

關於 splrep 成功的整數標誌。如果 ier<=0,則表示成功。如果 ier 在 [1,2,3] 中發生錯誤但未引發錯誤。否則會引發錯誤。

msg str,可選

與整數標誌 ier 對應的消息。

注意

請參閱 splev 以評估樣條及其導數。使用來自 FITPACK 的 FORTRAN 例程 curfit

用戶有責任確保x是獨一無二的。否則,splrep不會返回合理的結果。

如果提供,結t必須滿足Schoenberg-Whitney條件,即必須有數據點的子集x[j]這樣t[j] < x[j] < t[j+k+1], 為了j=0, 1,...,n-k-2.

此例程 zero-pads 係數數組 c 具有與結數組 t 相同的長度(評估例程忽略尾隨的 k + 1 係數, splev BSpline 。)這是在與 splprep 相比,它沒有 zero-pad 係數。

參考

基於 [1]、[2]、[3] 和 [4] 中說明的算法:

[1]

P. Dierckx,“使用樣條函數對實驗數據進行平滑、微分和積分的算法”,J.Comp.Appl.Maths 1 (1975) 165-184。

[2]

P. Dierckx,“使用樣條函數在矩形網格上平滑數據的快速算法”,SIAM J.Numer.Anal。 19 (1982) 1286-1304。

[3]

P. Dierckx,“用樣條函數進行曲線擬合的改進算法”,報告 tw54,計算機科學係,K.U.魯汶,1981 年。

[4]

P. Dierckx,“用樣條擬合曲線和曲麵”,數值分析專著,牛津大學出版社,1993 年。

例子

您可以使用B-spline 曲線插入一維點。教程中提供了更多示例。

>>> import numpy as np
>>> import matplotlib.pyplot as plt
>>> from scipy.interpolate import splev, splrep
>>> x = np.linspace(0, 10, 10)
>>> y = np.sin(x)
>>> spl = splrep(x, y)
>>> x2 = np.linspace(0, 10, 200)
>>> y2 = splev(x2, spl)
>>> plt.plot(x, y, 'o', x2, y2)
>>> plt.show()
scipy-interpolate-splrep-1.png

相關用法


注:本文由純淨天空篩選整理自scipy.org大神的英文原創作品 scipy.interpolate.splrep。非經特殊聲明,原始代碼版權歸原作者所有,本譯文未經允許或授權,請勿轉載或複製。