当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.x_label_on_top方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.x_label_on_top方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.x_label_on_top方法的具体用法?Python PlotUtilities.x_label_on_top怎么用?Python PlotUtilities.x_label_on_top使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.x_label_on_top方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: make_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import x_label_on_top [as 别名]
def make_plot(retract,pred_info,event,interp_raw,probability_idx,
              surface_idx,use_previous=True,use_surface_shading=True):
    # get the plotting information
    style_raw = dict(color='k',alpha=0.3)
    style_interp = dict(color='k',alpha=1)
    x_plot,y_plot = Plotting.plot_format(retract)
    min_x,max_x = min(x_plot),max(x_plot)/3
    fudge_x = abs(max_x-min_x) * 0.05
    xlim = np.array([min_x-fudge_x,max_x+fudge_x])
    probabilities = pred_info.probabilities
    probability_min = np.min([min(p) for p in probabilities])
    before_slice = event
    after_slice = slice(event.stop,None,1)
    surface_plot = lambda label : \
        plt.axvspan(min(x_plot),x_plot[surface_idx],alpha=0.2,color='k',
                    label=label)
    color_plot = lambda x,y,**kw : \
                 Plotting.before_and_after(x,y,before_slice,after_slice,**kw)
    plt.subplot(2,1,1)
    color_plot(x_plot,y_plot,style=dict(alpha=0.3))
    color_plot(x_plot,f_plot_y(interp_raw))
    if (use_surface_shading):
        surface_plot(None)
    PlotUtilities.x_label_on_top()
    PlotUtilities.lazyLabel("Time (s)","Force (pN)","")
    plt.xlim(xlim)
    plt.subplot(2,1,2)
    if (use_previous and (probability_idx != 0)):
        plt.semilogy(x_plot,probabilities[probability_idx-1],color='k',
                     alpha=0.3,linestyle='--',label="Previous")
    plt.semilogy(x_plot,probabilities[probability_idx],label="Probability",
                 color='k')
    plt.xlim(xlim)
    plt.ylim([probability_min/2,2])
    if (use_surface_shading):
        surface_plot("Surface")
    PlotUtilities.no_x_label()
    PlotUtilities.lazyLabel("","Probability","",loc="lower right")
开发者ID:prheenan,项目名称:Research,代码行数:40,代码来源:main_figure_path.py

示例2: plot_force

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import x_label_on_top [as 别名]
def plot_force(x_plot,y_plot,interp_raw,style_raw,style_interp):
    plt.plot(x_plot,y_plot,**style_raw)
    plt.plot(x_plot,f_plot_y(interp_raw),**style_interp)
    PlotUtilities.lazyLabel("Time (s)","Force (pN)","")
    PlotUtilities.x_label_on_top()
开发者ID:prheenan,项目名称:Research,代码行数:7,代码来源:main_figure_noise.py

示例3: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import x_label_on_top [as 别名]
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    data_file = "../_Data/example_protein.pkl"
    data = CheckpointUtilities.lazy_load(data_file)
    # get the 'raw' no-event probabilities, and the increasingly domain-specific
    # ones
    threshold = 1e-3
    pred_kw = dict(threshold=threshold)
    split_fec_no_domain_specific,info_no_domain_specific= \
        Detector._predict_full(data,f_refs=[],**pred_kw)
    _,info_remove_adhesions = Detector._predict_full(data,\
      f_refs=[Detector.adhesion_mask_function_for_split_fec],**pred_kw)
    _,info_final = Detector._predict_full(data,**pred_kw)
    # get the plotting versions of the time, etc
    time= split_fec_no_domain_specific.retract.Time
    time_plot = time - time[0]
    final_event_time = time_plot[info_final.event_idx[-1]]
    xlim_time = [0,final_event_time*1.1]
    force_plot = split_fec_no_domain_specific.retract.Force * 1e12
    force_interp_plot = \
        split_fec_no_domain_specific.retract_spline_interpolator()(time) * 1e12
    # plot everything
    raw_force_kwargs = dict(color='k',alpha=0.3)
    interp_force_kwargs = dict(color='b',linewidth=1.25)
    probability_kwargs = dict(color='r',linestyle="-",linewidth=0.75)
    # for the probabilities, how far from the maximum y the scale bar should be
    # (units [0,1]
    y_frac_prob = 0.3
    common_scale_dict = dict(width=0.1,unit="ms",
                             unit_kwargs=dict(value_function=lambda x: 1e3 * x))
    fec_scale_dict = dict(offset_y=0.5,offset_x=0.15,**common_scale_dict)
    prob_scale_dict = dict(**fec_scale_dict)
    prob_scale_dict['offset_y'] = y_frac_prob
    n_cols = 1
    n_rows = 6
    ylim_force_pN = [-35,max(force_interp_plot)+1.1+75]
    to_prob_plot = lambda x: np.log10(x)
    ylim_prob = [to_prob_plot(min((info_final.cdf))/5),1.1]
    title_kwargs = dict(loc='left',color='b')
    kwargs_axis = dict()
    kw = dict(title_kwargs=title_kwargs,axis_kwargs=kwargs_axis)
    arrow = "$\Downarrow$"
    prob_str = PlotUtilities.variable_string("P")
    force_str = PlotUtilities.unit_string("F")
    probability_label = "log$_{\mathbf{10}}$" + "({:s})".format(prob_str)
    probability_label_post = probability_label
    n_cols = 3
    n_rows = 6
    force_label = "{:s} (pN)".format(force_str)
    gs = gridspec.GridSpec(nrows=n_rows,ncols=n_cols,
                           width_ratios=[1 for _ in range(n_cols)],
                           height_ratios=[0.75,0.75,0.75,0.75,1,1])
    fig = PlotUtilities.figure(figsize=(3.25,4.25))
    # plot the 'raw' force and spline
    ax_raw = plt.subplot(gs[0,:])
    plt.plot(time_plot,force_plot,label="Raw",**raw_force_kwargs)    
    plt.plot(time_plot,force_interp_plot,label="Spline",
             **interp_force_kwargs)
    PlotUtilities.x_label_on_top(ax_raw)
    PlotUtilities.no_x_label(ax_raw)
    plt.ylim(ylim_force_pN)                
    PlotUtilities.lazyLabel("Time (s)",force_label,"",loc="upper center",
                            legend_kwargs=dict(handlelength=0.75,ncol=2),
                            **kw)
    plt.xlim(xlim_time)
    Scalebar.x_scale_bar_and_ticks_relative(ax=ax_raw,**fec_scale_dict)
    tick_style()
    # # plot the 'raw' probability
    ax_raw_prob = plt.subplot(gs[1,:])
    plt.plot(time_plot,to_prob_plot(info_no_domain_specific.cdf),
             **probability_kwargs)    
    title_prob = arrow + "Determine probability of no event"
    PlotUtilities.lazyLabel("",probability_label,title_prob,**kw)
    PlotUtilities.no_x_label(ax_raw_prob)        
    plt.ylim(ylim_prob)
    plt.xlim(xlim_time)
    Scalebar.x_scale_bar_and_ticks_relative(ax=ax_raw_prob,**prob_scale_dict)
    tick_style()
    # # plot the adhesion-fixed probability
    ax_adhesion = plt.subplot(gs[2,:])
    plt.plot(time_plot,to_prob_plot(info_remove_adhesions.cdf),
             **probability_kwargs)
    title_adhesion = arrow + r"Suppress adhesion, stretching"
    PlotUtilities.lazyLabel("",probability_label_post,title_adhesion,**kw)
    PlotUtilities.no_x_label(ax_adhesion)      
    plt.ylim(ylim_prob)
    plt.xlim(xlim_time)    
    Scalebar.x_scale_bar_and_ticks_relative(ax=ax_adhesion,
                                            **prob_scale_dict)
    tick_style()
    # # plot the final probability
    ax_final_prob = plt.subplot(gs[3,:])
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_flowchart.py

示例4: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import x_label_on_top [as 别名]
def run():
    """
    <Description>q

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    in_dir = None
    flickering_dir = "../Data/fec/"
    # XXX use the flickering dir for stuff
    cache_dir = flickering_dir 
    GenUtilities.ensureDirExists(flickering_dir)
    force_read_data = False
    raw_data = IoUtilHao.read_and_cache_data_hao(flickering_dir,
                                                force=force_read_data,
                                                 cache_directory=flickering_dir,
                                                 limit=3)
    example = raw_data[0]                                                 
    example_plot = copy.deepcopy(example)
    # fix the manual offset
    example_plot.LowResData.force -= 7.1
    plot_examples = [example_plot]
    vel_m_per_s = example_plot.Velocity
    x_func = lambda y: y.Separation
    y_func = lambda y: y.Force 
    ylim_pN = [-20,155]
    xlim_nm = [5,75]
    zoom_regions_nm = [ [61.5,63.6]]
    adhesion_max_nm = 19
    region_labels = ["ED Helix","CB Helix","A Helix"]
    region_colors = jcp_fig_util.regions_and_colors()
    regions_nm = [[x,l,c] for l,(x,c) in zip(region_labels,region_colors)]
    colors_regions = [regions_nm[-1]]                        
    # slice the regions 
    regions = [FEC_Util.slice_by_separation(example_plot,*reg) 
               for reg in zoom_regions_nm]
    ylim_pN_zoom = [50,120]
    # # make the plot 
    fig = PlotUtilities.figure((7,4))
    # create the 'top' gridspec
    top_spec = gridspec.GridSpec(2,3)
    # create separate axes for the image and FECs 
    image_spec = \
        gridspec.GridSpecFromSubplotSpec(1,1,subplot_spec=top_spec[0,0])
    data_spec = \
        gridspec.GridSpecFromSubplotSpec(1,2,subplot_spec=top_spec[0,1:])
    # # plot the image 
    ax = plt.subplot(image_spec[:])
    plt.imshow(plt.imread("../Data/sample_cartoon.png"),aspect='auto')
    ax.axis('off')
    # # plot the example fec and zoomed regions
    #
    # 'full' example 
    ax_example = plt.subplot(data_spec[:,0])
    alpha_data = 0.4
    color_data = 'g'
    dict_plot = dict(n_filter_points=2000,
                     style_data=dict(color=color_data,alpha=alpha_data,
                                     linewidth=0.5,linestyle='-'))
    x_full_plot = x_func(example_plot)                                     
    FEC_Plot._fec_base_plot(x_full_plot,y_func(example_plot),
                            **dict_plot)
    PlotUtilities.tom_ticks(ax=ax_example,num_major=5,change_x=False)    
    PlotUtilities.tom_ticks(ax=ax_example,num_major=4,change_y=False)                              
    for i,(r,color) in enumerate(zip(regions,colors_regions)):
        # put a box around the region 
        x,y = x_func(r),y_func(r)
        Annotations.add_rectangle(ax_example,[min(x),max(x)],[min(y),max(y)])
    plt.ylim(ylim_pN)
    plt.xlim(xlim_nm)
    jcp_fig_util.add_helical_boxes(ax=ax_example)
    # plot the adhesion regions
    plt.axvspan(min(x_full_plot),adhesion_max_nm,color='0.85',
                linewidth=0)
    PlotUtilities.lazyLabel("Extension","Force","")   
    PlotUtilities.x_label_on_top(ax_example)
    PlotUtilities.no_x_label(ax_example)
    PlotUtilities.no_y_label(ax_example)
    x_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),width=15,unit="nm")
    y_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),
                    height=40,unit="pN")
    Scalebar.crossed_x_and_y_relative(offset_x=0.55,offset_y=0.58,
                                      x_kwargs=x_kwargs,
                                      y_kwargs=y_kwargs,
                                      ax=ax_example)    
    # add in the velocity annotation (in nm/s, from m/s)
    velocity_annotate(ax=ax_example,v=vel_m_per_s*1e9)
    # # plot all the zoomed regions 
    offsets_x = [0.8]
    offsets_y = [0.67]
    heights_pN = [10]
    widths_s = [0.001]
    for i,(r,color) in enumerate(zip(regions,colors_regions)):
        ax_tmp = plt.subplot(data_spec[-1])
        dict_tmp = dict(**dict_plot)
        dict_tmp['style_data']['color'] = color[-1]
        time = r.Time
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_diagram.py


注:本文中的GeneralUtil.python.PlotUtilities.x_label_on_top方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。