当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.colorbar方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.colorbar方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.colorbar方法的具体用法?Python PlotUtilities.colorbar怎么用?Python PlotUtilities.colorbar使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.colorbar方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: smart_colorbar

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import colorbar [as 别名]
def smart_colorbar(im,ax=plt.gca(),fig=plt.gcf(),
                   divider_kw=dict(size="5%",pad=0.1),
                   label="Height (nm)",add_space_only=False):
    """
    Makes a color bar on the given axis/figure by moving the axis over a little 
    """    
    # make a separate axis for the colorbar 
    divider = make_axes_locatable(ax)
    cax = divider.append_axes("right", size="5%", pad=0.1)
    if (not add_space_only):
        PlotUtilities.colorbar(label,fig=fig,
                               bar_kwargs=dict(mappable=im,cax=cax))    
    else:
        cax.axis('off')
开发者ID:prheenan,项目名称:Research,代码行数:16,代码来源:ImageUtil.py

示例2: MakePlot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import colorbar [as 别名]
def MakePlot(SurfaceImage,label,OutPath,**kwargs):
    """
    Makes a simple plot of the desired distribution
    """
    # make plots
    fig = PlotUtilities.figure(figsize=(10/1.5,16/1.5))
    ax = plt.subplot(2,1,1)
    ImageUtil.PlotImage(SurfaceImage,**kwargs)
    PlotUtilities.lazyLabel(r"Microns",r"Microns",label)
    PlotUtilities.colorbar("Height (nm)")
    ax = plt.subplot(2,1,2)
    bins_tmp = ImageUtil.PlotImageDistribution(SurfaceImage)
    PlotUtilities.lazyLabel("Height above surface(nm)",
                            "Count","Distribution of Heights")
    PlotUtilities.savefig(fig,OutPath)
    return bins_tmp
开发者ID:prheenan,项目名称:Research,代码行数:18,代码来源:MainSurfaces.py

示例3: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import colorbar [as 别名]
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    base = FEC_Util.default_data_root()
    input_directory = base + \
        "4Patrick/CuratedData/Outreach/2017-JILA-photo-contest/"
    files = GenUtilities.getAllFiles(input_directory,ext=".ibw")
    # read all the ibw files in and cache them
    images = []
    func = PxpLoader.read_ibw_as_image
    for i,f in enumerate(files):
        cache_file = "./{:d}.pkl".format(i)
        tmp = CheckpointUtilities.getCheckpoint(cache_file,func,False,f)
        images.append(tmp)
    crop = [ None,None,None,None,None,None,None,None ]
    for i,image in enumerate(images):        
        fig = PlotUtilities.figure()
        vmin,vmax = np.percentile(image.height_nm_rel(),[75,99])
        range_plot_nanometers = 1000 * image.range_microns()   
        vmin_dict = dict(vmin=vmin,vmax=vmax)
        ImageUtil.PlotImage(image,cmap=plt.cm.gray,
                            range_plot=range_plot_nanometers,**vmin_dict)
        PlotUtilities.FormatImageAxis()
        PlotUtilities.colorbar("Height (nm)")
        pixel_size_meters = image.pixel_size_meters
        pixel_size_nanometers = pixel_size_meters * 1e9
        print(pixel_size_nanometers,range_plot_nanometers)
        scalebar = ScaleBar(pixel_size_nanometers,'nm',box_alpha=0.7)
        plt.gca().add_artist(scalebar)                                    
        PlotUtilities.savefig(fig,"{:d}.pdf".format(i))
开发者ID:prheenan,项目名称:Research,代码行数:39,代码来源:main_photo_contest.py

示例4: MakeIwtPlot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import colorbar [as 别名]
def MakeIwtPlot(OutDir,ExpectedContourLength,Corrected):
    """
    Makes an inverse Weierstrass plot and a 2-D heat map of all the data

    Args:
        OutDir: base directory to save the plot into
        ExpectedContourLength: 
        Corrected: output of GetCorrectedFECs, ie: tuple of (approach,retract)
    """
    # get the IWT transform
    IwtObjs = []
    for _,RetractRaw in Corrected:
        retract = FEC_Util.GetFECPullingRegion(RetractRaw,FlipSign=False)
        retract.Separation -= retract.Separation[0]
        Args = dict(Time=retract.Time,
                    Extension=retract.Separation,
                    Force=retract.Force,
                    SpringConstant=retract.SpringConstant,
                    Velocity=retract.Velocity)
        tmp = InverseWeierstrass.FEC_Pulling_Object(**Args)
        IwtObjs.append(tmp)
    Landscape = InverseWeierstrass.FreeEnergyAtZeroForce(IwtObjs,NumBins=400)
    # Convert the data to format for display as a 2-D heat map
    FlatX = np.concatenate([x.Extension for x in IwtObjs])
    FlatY = np.concatenate([x.Force for x in IwtObjs])
    # plotting beautification
    MinX = min(FlatX)
    BinsXandY = [400,80]
    # N * L0,expected, should be enough to get through overstretching
    MaxX = 3*ExpectedContourLength
    fudge = (MaxX-MinX)/20
    # limits and unit conversions
    ToPlotX = lambda x: x*1e9
    xlim = lambda: plt.xlim([ToPlotX(MinX),ToPlotX(MaxX)])
    EnergyPerKt = Landscape.EnergyLandscape*Landscape.Beta
    LandscapeExtensionsPlot = ToPlotX(Landscape.Extensions)
    # go to nm and pN for the histogram
    HistogramX = ToPlotX(FlatX)
    HistogramY = FlatY * 1e12
    # make a heat map of everything, no color bar this time
    fig = pPlotUtil.figure(figsize=(12,12))
    PlotHeatMap(Bins=BinsXandY,X=HistogramX,Y=HistogramY,
                ContourLengthNm=ToPlotX(ExpectedContourLength))
    xlim()
    pPlotUtil.lazyLabel("Separation (nm)","Force (pN)","FEC Heat Map",
                        legendBgColor='w',frameon=True)
    pPlotUtil.colorbar("Count in bins")
    pPlotUtil.savefig(fig,"{:s}Out/HeatMap.png".format(OutDir))
    # make a new figure, also add the heatmap
    fig = pPlotUtil.figure(figsize=(12,18))
    plt.subplot(3,1,1)
    PlotHeatMap(Bins=BinsXandY,X=HistogramX,Y=HistogramY,
                ContourLengthNm=ToPlotX(ExpectedContourLength))
    xlim()
    pPlotUtil.lazyLabel("","Force (pN)","",frameon=True,legendBgColor='w')
    plt.subplot(3,1,2)
    plt.plot(LandscapeExtensionsPlot,EnergyPerKt)
    pPlotUtil.lazyLabel("","Free Energy (kT)","")
    xlim()
    plt.subplot(3,1,3)
    Grad = np.gradient(EnergyPerKt)
    plt.plot(LandscapeExtensionsPlot,Grad)
    xlim()
    # avoid super negative spikes
    plt.ylim([-max(Grad),max(Grad)])
    pPlotUtil.lazyLabel("Extension (nm)","Free Energy Difference (kT)","")
    pPlotUtil.savefig(fig,"{:s}Out/IWT.png".format(OutDir))
开发者ID:prheenan,项目名称:Research,代码行数:69,代码来源:MainCorrection.py

示例5: MakeGridPlot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import colorbar [as 别名]
def MakeGridPlot(ImageInfo,Limits,Base,Name,figsize,Force=False,
                 ImageFunc=lambda m_list: m_list[0],hist_kwargs=dict()):
    """
    Given a list of images, files, and labels, makes a gridwise comparison

    Args:
        ImageInfo: Tuple of <FileName,Label,plotkwargs>
        Limits: x Limits for the histogram
        Base: Base directory (where in and out live
        figsize: how big to make the grid figure
        Force: if true, force re-reading
        ImageFunc: given a list of images from the file, selects one and 
        only one
    """
    # first, loop through and make the 'normal' plots, per distribution
    Images = []
    OutBase = Base + "out/"
    InBase = Base + "in/"
    max_n = 0
    for i,(file_name,label,kwargs) in enumerate(ImageInfo):
        List = CheckpointUtilities.getCheckpoint(OutBase +"c_"+label+".pkl",
                                                 ReadImageAsObject,Force,
                                                 InBase + file_name)
        Image = ImageFunc(List)
        n,bins,patches = \
            MakePlot(Image,label,OutPath=OutBase + str(i)+"_" +label + ".pdf",
                     **kwargs)
        max_n = max(max_n,max(n))
        Images.append(Image)
    # now we make a grid
    NumRows = 4
    NumCols = len(ImageInfo)
    gs = gridspec.GridSpec(NumRows, NumCols)
    bins = []
    fig = PlotUtilities.figure(figsize=figsize)
    colors = ['r','g','b','k','m','c','y']
    for i in range(NumCols):
        im  = Images[i]
        color_idx= i % len(colors)
        label,kwargs = ImageInfo[i][1:]
        # plot these next to each other
        ax = plt.subplot(gs[0,i])
        ImageUtil.PlotImage(im,**kwargs)
        if (i ==0 ):
            PlotUtilities.lazyLabel(r"Microns",r"Microns",label)
            PlotUtilities.colorbar("Height (nm)")
        else:
            PlotUtilities.lazyLabel(r"","",label)
            PlotUtilities.colorbar("")
        ax = plt.subplot(gs[1,i])
        bins_tmp = ImageUtil.PlotImageDistribution(im,color=colors[color_idx])
        plt.xlim(Limits)
        # set common y limits
        plt.ylim(0.5,2*max_n)
        bins.append(bins_tmp)
        # only add the x and y labels to the first plot, to de-clutter
        if (i == 0):
            PlotUtilities.lazyLabel("Height above surface(nm)",
                                    "Count","Distribution of Heights")
        else:
            # just get the axis formatting
            PlotUtilities.lazyLabel("","","")
    ax = plt.subplot(gs[2, :])
    labels = [i[1] for i in ImageInfo]
    for i,im in enumerate(Images):
        color_idx = i % len(colors)
        ImageUtil.PlotImageDistribution(im,label=labels[i],
                                        color=colors[color_idx],
                                        PlotLines=False,**hist_kwargs)
        plt.xlim(Limits)
        PlotUtilities.lazyLabel("Height above surface(nm)",
                                "Count","Distribution of Heights")
    ax = plt.subplot(gs[3,:])
    data = [i.height_nm_rel() for i in Images]
    x_vals = np.arange(len(data))
    # (1) show the 5-95 by the notches, *dont* show any outliers (too slow)
    # (2) show the median line 
    box = plt.boxplot(data,positions=x_vals,whis=[5,95],sym='',
                      patch_artist=True)
    plt.xticks(x_vals, labels,rotation=0,)
    PlotUtilities.lazyLabel("","Height (nm)",
                            "Comparison of Image Distributions")
    # set the alpha and colors
    for patch, color in zip(box['boxes'], colors):
        patch.set_facecolor(color)
        patch.set_alpha(0.3)
    # finally, plot the mean and standard deviations as a functo
    PlotUtilities.savefig(fig,OutBase+ "Grid_" + Name+".pdf")
开发者ID:prheenan,项目名称:Research,代码行数:90,代码来源:MainSurfaces.py


注:本文中的GeneralUtil.python.PlotUtilities.colorbar方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。