当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.save_twice方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.save_twice方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.save_twice方法的具体用法?Python PlotUtilities.save_twice怎么用?Python PlotUtilities.save_twice使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.save_twice方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import save_twice [as 别名]
def run(in_base="./"):
    """
    
    """
    out_base = "./"
    data_file = in_base + "data/Scores.pkl"
    force=False
    cache_file = out_base + "cache.pkl"
    metrics = CheckpointUtilities.getCheckpoint(cache_file,get_best_metrics,
                                                force,data_file)
    loc_left = (-0.15,1.1)
    loc_top = (-0.15,1.05)
    loc_lower = (-0.15,0.95)
    locs = [loc_top,loc_left,loc_left,loc_lower,loc_lower]
    titles = Plotting.algorithm_title_dict()
    colors = Plotting.algorithm_colors()
    for i,m in enumerate(metrics):
        name = titles[m.name.lower()]
        safe_name = name.replace(" ","")
        color_pred =  colors[i]
        distance_histogram= Plotting.event_error_kwargs(m,color_pred=color_pred)
        true,pred = m.true,m.pred
        # make the 'just the distance' figures
        fig = PlotUtilities.figure((10,6))
        Plotting.histogram_event_distribution(**distance_histogram)
        final_out_dist = "{:s}{:s}_dist_full.pdf".format(out_base,safe_name)
        PlotUtilities.savefig(fig,final_out_dist)
        # make the rupture spectrum figure
        fig = PlotUtilities.figure((12,7))
        final_out_rupture = "{:s}{:s}_rupture_full.pdf".\
                            format(out_base,safe_name)
        Plotting.rupture_plot(true,pred,fig=fig)
        PlotUtilities.savefig(fig,final_out_rupture)
        fig = PlotUtilities.figure((7,4))
        # plot the metric plot
        Plotting.rupture_plot(true,pred,use_legend=True,
                              distance_histogram=distance_histogram,
                              fig=fig,color_pred=color_pred)
        final_out_path = "{:s}{:s}_full.pdf".format(out_base,safe_name)
        PlotUtilities.label_tom(fig,loc=locs)
        plt.suptitle(name,y=0.98,color=colors[i],alpha=0.7)
        PlotUtilities.save_twice(fig,final_out_path +".svg",
                                 final_out_path + ".png",
                                 subplots_adjust=dict(wspace=0.3,hspace=0.1,
                                                      left=0.1,bottom=0.1,
                                                      top=0.87))
开发者ID:prheenan,项目名称:Research,代码行数:48,代码来源:main_figure_feather.py

示例2: make_main_figure

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import save_twice [as 别名]
def make_main_figure(output_path,trials):
    """
    creates the 'main' timing figure (for use in the paper) 

    Args:
        output_path: where to save the file
        trials: the pickled timing trials information
    """
    # make the figure for the presentation
    fig = PlotUtilities.figure(figsize=(6,3))
    _main_figure(trials)
    plt.xlim([-1,3])
    PlotUtilities.savefig(fig,output_path.replace(".pdf","_pres.pdf"))
    # make the figure for the paper
    fig = PlotUtilities.figure(figsize=(8,3))
    _main_figure(trials)
    PlotUtilities.label_tom(fig,loc=(-0.05,1))
    PlotUtilities.save_twice(fig,output_path + ".png",output_path + ".svg")
开发者ID:prheenan,项目名称:Research,代码行数:20,代码来源:main_figure_timing.py

示例3: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import save_twice [as 别名]
def run(base="./"):
    """
    
    """
    out_base = base
    data_file = base + "data/Scores.pkl"
    force=False
    metric_list = CheckpointUtilities.getCheckpoint(base + "cache.pkl",
                                                    Offline.get_metric_list,
                                                    force,data_file)
    lim_load_max = [0,0]
    lim_force_max = [0,0]
    distance_limits = [0,0]
    count_max = 0
    distance_limits = []
    coeffs_compare = []
    # get the plotting limits
    update_limits = Offline.update_limits
    for m in metric_list:
        lim_force_max = update_limits(m.lim_force,lim_force_max)
        lim_load_max = update_limits(m.lim_load,lim_load_max,floor=1e-1)        
        count_max = max(m.counts,count_max)
        distance_limits.append(m.distance_limit(True))
        coeffs_compare.append(m.coefficients())
    write_coeffs_file(out_base + "metric_table.tex",coeffs_compare)
    distance_limits = [np.min(distance_limits),np.max(distance_limits)]
    # POST: have limits...
    # plot the best fold for each
    out_names = []
    colors_pred =  algorithm_colors()
    # make a giant figure, 3 rows (one per algorithm)
    fig = PlotUtilities.figure(figsize=(7,8))
    entire_figure = gridspec.GridSpec(3,1)
    title_dict = Plotting.algorithm_title_dict()
    for i,m in enumerate(metric_list):
        x,name,true,pred = m.x_values,m.name,m.true,m.pred
        best_param_idx = m.best_param_idx
        out_learner_base = "{:s}{:s}".format(out_base,name)
        color_pred =  colors_pred[i]
        # define the styles for the histogram
        xlabel_histogram = r"Distance [x$_k$]" \
                           if (i == len(metric_list)-1) else ""
        # get the distance information we'll need
        distance_kw = Plotting.\
            event_error_kwargs(m,color_pred=color_pred,
                               distance_limits=distance_limits,
                               xlabel=xlabel_histogram)
        gs = gridspec.GridSpecFromSubplotSpec(2, 3, width_ratios=[2,2,1],
                                              height_ratios=[2,1],
                                              subplot_spec=entire_figure[i],
                                              wspace=0.35,hspace=0.4)
        # plot the metric plot
        Plotting.rupture_plot(true,pred,
                              lim_plot_load=lim_load_max,
                              lim_plot_force=lim_force_max,
                              color_pred=color_pred,
                              count_limit=[0.5,count_max*5],use_legend=(i==0),
                              distance_histogram=distance_kw,gs=gs,
                              fig=fig)
        PlotUtilities.title(title_dict[name],x=-2,y=3.85,color=color_pred,
                            alpha=1)
    # individual plot labels
    n_subplots = 5
    n_categories = len(metric_list)
    letters =  string.uppercase[:n_categories]
    letters = [ ["{:s}{:d}".format(s,n+1) for n in range(n_subplots)]
                 for s in letters]
    flat_letters = [v for list_of_v in letters for v in list_of_v]
    PlotUtilities.label_tom(fig,flat_letters,loc=(-0.22,1.14))
    final_out_path = out_base + "landscape.pdf"
    PlotUtilities.save_twice(fig,final_out_path + ".png",final_out_path +".svg",
                             subplots_adjust=dict(left=0.10,
                                                  hspace=0.4,
                                                  wspace=0.2,top=0.95))
开发者ID:prheenan,项目名称:Research,代码行数:76,代码来源:main_figure_performance_cs.py


注:本文中的GeneralUtil.python.PlotUtilities.save_twice方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。