本文整理汇总了Python中GeneralUtil.python.PlotUtilities类的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities类的具体用法?Python PlotUtilities怎么用?Python PlotUtilities使用的例子?那么恭喜您, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了PlotUtilities类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_learner_versus_loading_rate_and_number
def plot_learner_versus_loading_rate_and_number(learner_trials):
"""
makes a plot of the runtimes versus number of force extension curves
for each loading rate used.
Args:
learner_trials: a single learner object
Returns:
nothing, makes a pretty plot
"""
styles = [dict(color='r',marker='x',linestyle='--'),
dict(color='b',marker='o',linestyle='-'),
dict(color='k',marker='v',linestyle='-.'),
dict(color='g',marker='s',linestyle='-',linewidth=3),
dict(color='m',marker='*',linestyle='-.',linewidth=3),
dict(color='k',marker='8',linestyle='-',linewidth=2),
dict(color='r',marker='p',linestyle='-.',linewidth=2),
dict(color='b',marker='d',linestyle='--'),
dict(color='k',marker='<',linestyle='-'),
dict(color='g',marker='+',linestyle='-.')]
inf = timing_info(learner_trials)
pts,xerr = _timing_plot_pts_and_pts_error(inf,factor=1)
for i,(num,mean,yerr,vel) in enumerate(zip(inf.nums,inf.means,inf.stdevs,
inf.velocities)):
style = styles[i % len(styles)]
velocity_label = r"v={:4d}nm/s".format(int(vel))
number_pretty = r"N$\approx$" + pretty_exp(pts[i])
label = "{:s}\n({:s})".format(velocity_label,number_pretty)
plt.errorbar(x=num,y=mean,yerr=yerr,label=number_pretty,alpha=0.7,
**style)
title = "Runtime verus loading rate and number of curves\n" + \
"(N, points/curve, in parenthesis) "
PlotUtilities.lazyLabel("Number of Force-Extension Curves","Time",title)
示例2: run
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
network = FEC_Util.default_data_root()
base = network + "4Patrick/CuratedData/Lipids/DOPC/"+\
"NegativeControls/Representative_Gallery/"
_,raw_data = FEC_Util.read_and_cache_pxp(base,force=False)
processed = [FEC_Util.SplitAndProcess(r) for r in raw_data]
inches_per_plot = 4.5
n_rows,n_cols = FEC_Plot._n_rows_and_cols(processed)
fig_size = (n_cols*inches_per_plot,n_rows*inches_per_plot)
fig = PlotUtilities.figure(figsize=(fig_size))
ylim_pN = [-20,75]
xlim_nm = [-10,100]
FEC_Plot.gallery_fec(processed,xlim_nm,ylim_pN)
plt.suptitle("Negative Control Gallery",y=1.2,fontsize=25)
PlotUtilities.savefig(fig,base + "out.png",close=False)
PlotUtilities.savefig(fig,"./out.png")
示例3: FEC_AlreadySplit
def FEC_AlreadySplit(Appr,Retr,
XLabel = "Separation (nm)",
YLabel = "Force (pN)",
ConversionOpts=def_conversion_opts,
PlotLabelOpts=dict(),
PreProcess=False,
NFilterPoints=50,
LegendOpts=dict(loc='best'),
**kwargs):
"""
Args:
XLabel: label for x axis
YLabel: label for y axis
ConversionOpts: see FEC_Util.SplitAndProcess
PlotLabelOpts: see arguments after filtering of ApproachRetractCurve
PreProcess: if true, pre-processes the approach and retract separately
(ie: to zero and flip the y axis).
NFilterPoints: see FEC_Util.SplitAndProcess, for Savitsky-golay
PreProcess: passed to
"""
ApprCopy = FEC_Util.UnitConvert(Appr,**ConversionOpts)
RetrCopy = FEC_Util.UnitConvert(Retr,**ConversionOpts)
if (PreProcess):
ApprCopy,RetrCopy = FEC_Util.PreProcessApproachAndRetract(ApprCopy,
RetrCopy,
**kwargs)
_ApproachRetractCurve(ApprCopy,RetrCopy,
NFilterPoints=NFilterPoints,**PlotLabelOpts)
PlotUtilities.lazyLabel(XLabel,YLabel,"")
PlotUtilities.legend(**LegendOpts)
示例4: landscape_plot
def landscape_plot(landscape,landscape_rev,landscape_rev_only,kT,f_one_half):
ToX = lambda x: x*1e9
landscape_rev_kT = landscape_rev.G_0/kT
landscape_fwd_kT = landscape.G_0/kT
landscape_rev_only_kT = landscape_rev_only.G_0/kT
ext_fwd = landscape_rev.q
ext_rev = landscape.q
# tilt one of the landscapes
ext_tilt = ext_fwd
landscape_tilt_kT = landscape_rev_kT
landscape_fonehalf_kT = (landscape_tilt_kT*kT-ext_tilt* f_one_half)/kT
landscape_fonehalf_kT_rel = landscape_fonehalf_kT-min(landscape_fonehalf_kT)
xlim = [195,265]
plt.subplot(2,1,1)
sanit = lambda x: x - min(x)
# add in the offsets, since we dont simulate before...
plt.plot(ToX(ext_fwd),sanit(landscape_rev_kT)+20,color='r',alpha=0.6,
linestyle='-',linewidth=3,label="Bi-directional")
plt.plot(ToX(ext_rev),sanit(landscape_fwd_kT)+75,color='b',
linestyle='--',label="Only Forward")
plt.plot(ToX(landscape_rev_only.q),sanit(landscape_rev_only_kT)+20,
"g--",label="Only Reverse")
PlotUtilities.lazyLabel("","Free Energy (kT)",
"Hummer 2010, Figure 3")
plt.xlim(xlim)
plt.ylim([0,300])
plt.subplot(2,1,2)
plt.plot(ToX(ext_tilt),2.5+landscape_fonehalf_kT_rel,'g^',
markevery=10)
plt.xlim(xlim)
plt.ylim([0,25])
PlotUtilities.lazyLabel("Extension q (nm)","Energy at F_(1/2) (kT)","")
示例5: run
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
file_name = "defl.ibw"
defl_volts_wave = PxpLoader.read_ibw_as_wave(file_name)
defl_volts = defl_volts_wave.DataY
invols_nm_per_volt = 154.8
spring_pN_per_nM = 5.70
force_pN = defl_volts * invols_nm_per_volt * spring_pN_per_nM
# zero out to the maximum
force_pN -= np.mean(force_pN)
data_interval_in_s = 1/500e3
rate = 1/float(data_interval_in_s) # data rate in Hz
taus = np.logspace(-5,2,num=50,base=10) # tau-values in seconds
# fractional frequency data
(taus_used, adev, adeverror, adev_n) = \
allantools.adev(force_pN, data_type='freq', rate=rate, taus=taus)
fig = PlotUtilities.figure()
plt.errorbar(x=taus_used,y=adev,yerr=2*adeverror,label="95% C.I.")
plt.xscale('log')
plt.yscale('log')
plt.axhline(1,color='r',linestyle='--',label="1 pN")
PlotUtilities.lazyLabel("Averaging time (s)","Force (pN)","")
PlotUtilities.savefig(fig,"out.png")
示例6: plot_classification
def plot_classification(split_object,scoring_object):
"""
plots the classification of a single object
Args:
split_object: whatever was classified
scoring_object: Scoring.score object, used on split_object
Returns:
Nothing
"""
retract = split_object.retract
time,force = retract.Time,retract.Force
true_idx,pred_idx = scoring_object.idx_true,scoring_object.idx_predicted
boolean_true,boolean_predicted = scoring_object.get_boolean_arrays(time)
plt.subplot(2,1,1)
plt.plot(time,force,color='k',alpha=0.3)
highlight_events(true_idx,time,force,color='r',linestyle='-',
label="true events")
highlight_events(pred_idx,time,force,color='b',linestyle='None',
marker='.',label="predicted events")
PlotUtilities.lazyLabel("","Force(pN)","")
plt.subplot(2,1,2)
plt.plot(time,boolean_true,linewidth=4,label="True events",color='b')
plt.plot(time,boolean_predicted,label="Predicted",color='r',alpha=0.3)
PlotUtilities.lazyLabel("Time (s)","Force(pN)","")
示例7: run
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
in_dir = "./data/"
cache_dir = "./cache/"
out_dir = in_dir
GenUtilities.ensureDirExists(out_dir)
images = ImageUtil.cache_images_in_directory(pxp_dir=in_dir,
cache_dir=cache_dir)
# note: vmin/vmax are in nm (as is height)
vmin_nm = 0
vmax_nm = vmin_nm + 0.6
imshow_kwargs = dict(vmin=vmin_nm,vmax=vmax_nm,cmap = plt.cm.Greys_r)
for im in images:
src_file = im.SourceFilename()
# path to save the image out
full_out_path = "{:s}{:s}-{:s}.png".format(out_dir,src_file,im.Name())
fig = PlotUtilities.figure((3.5,4))
ax = plt.subplot(1,1,1)
im.height = ImageUtil.subtract_background(im,deg=3)
im = ImageUtil.make_image_plot(im,imshow_kwargs,pct=50)
ImageUtil.smart_colorbar(im=im,ax=ax,fig=fig)
PlotUtilities.savefig(fig,full_out_path,bbox_inches='tight')
示例8: cross_validation_distance_metric
def cross_validation_distance_metric(x_values,train_scores,valid_scores,
to_true):
"""
Plots the cross validation training and validation distance metric
Args:
x_values: x values
<train/valid>_scores: the training and validation scores used
to_true: distance metric plotted is *from* predicted *to* true
(ie: something like recall) if true, otherwise vice versa
Returns:
nothing
"""
# get the metrics and errors by parameters
x_train,train_dist,train_dist_std = \
Learning.median_dist_metric(x_values,train_scores,to_true=to_true)
x_valid,valid_dist,valid_dist_std = \
Learning.median_dist_metric(x_values,valid_scores,to_true=to_true)
y_plot = lambda y: y * 1e9
train_dist_plot,train_error_plot = y_plot(train_dist),y_plot(train_dist_std)
valid_dist_plot,valid_error_plot = y_plot(valid_dist),y_plot(valid_dist_std)
plt.errorbar(x=x_train,y=train_dist_plot,yerr=train_error_plot,
**style_train)
plt.errorbar(x=x_valid,y=valid_dist_plot,yerr=valid_error_plot,
**style_valid)
plt.xscale('log')
plt.yscale('log')
PlotUtilities.lazyLabel("Tuning Parameter","Median event distance (nm)","",
frameon=False)
示例9: distance_distribution_plot
def distance_distribution_plot(learner,box_kwargs=None,**kwargs):
"""
plots the distribution of distances to/from predicted events from/to
actual events, dependning on kwargs
Args:
learner: the learner object to use
kwargs: passed to event_distance_distribution (ie: to_true=T/F)
"""
train_scores = learner._scores_by_params(train=True)
valid_scores = learner._scores_by_params(train=False)
if (box_kwargs is None):
box_kwargs = dict(whis=[5,95])
name = learner.description.lower()
x_values = learner.param_values()
train_dist = Learning.event_distance_distribution(train_scores,**kwargs)
valid_dist = Learning.event_distance_distribution(valid_scores,**kwargs)
dist_plot = lambda x: [v for v in x]
train_plot = dist_plot(train_dist)
valid_plot = dist_plot(valid_dist)
plt.boxplot(x=train_plot,**box_kwargs)
plt.boxplot(x=valid_plot,**box_kwargs)
plt.gca().set_yscale('log')
PlotUtilities.lazyLabel("Tuning parameter","Distance Distribution (idx)",
"Event distributions for {:s}".format(name),
frameon=False)
示例10: sequence_plots
def sequence_plots(out_base,*args,**kwargs):
break_points = [_break_after_interp,_break_after_first_zoom,_dont_break]
for i,break_point in enumerate(break_points):
fig = PlotUtilities.figure((8,9))
plot(*args,when_to_break=break_point,**kwargs)
PlotUtilities.savefig(fig,out_base + "{:d}.pdf".format(i),
subplots_adjust=dict(wspace=0.05))
示例11: make_gallery_plot
def make_gallery_plot(areas,data_to_analyze,out_name="./gallery"):
# skip the first one (the entire landscape )
helical_areas = areas[1:]
helical_data = data_to_analyze[1:]
helical_kwargs = landscape_kwargs()[1:]
fig = PlotUtilities.figure((7,2.5))
helical_gallery_plot(helical_areas,helical_data,helical_kwargs)
PlotUtilities.save_png_and_svg(fig,out_name)
示例12: run
def run():
"""
simple script to compare wavelet transform and fft on something that
looks like our data
"""
fig = PlotUtilities.figure(figsize=(10,16))
MakeFigure()
PlotUtilities.savefig(fig,"out.png")
示例13: fmt
def fmt(remove_x_labels=True,remove_y_labels=True):
ax = plt.gca()
if (remove_x_labels):
ax.xaxis.set_ticklabels([])
if (remove_y_labels):
ax.yaxis.set_ticklabels([])
PlotUtilities.lazyLabel("","","")
plt.ylim([-25,80])
plt.xlim([-100,700])
示例14: heatmap_plot
def heatmap_plot(heatmap_data,amino_acids_per_nm,kw_heatmap=dict()):
ax_heat = plt.gca()
make_heatmap(*heatmap_data,kw_heatmap=kw_heatmap)
PlotUtilities.lazyLabel("","Force (pN)","")
# make a second x axis for the number of ammino acids
xlim_fec = plt.xlim()
limits = np.array(xlim_fec) * amino_acids_per_nm
tick_kwargs = dict(axis='both',color='w',which='both')
ax_heat.tick_params(**tick_kwargs)
plt.xlim(xlim_fec)
示例15: probability_plot
def probability_plot(inf,slice_eq):
plt.subplot(2,1,1)
plt.plot(inf.ext_bins_safe,inf.p_k)
plt.plot(inf.ext_bins,inf.P_q,'r--')
plt.plot(inf.ext_interp,inf.p_k_interp,'g-')
PlotUtilities.lazyLabel("","PDF","")
plt.subplot(2,1,2)
plt.plot(inf.ext_bins_safe,inf.free_energy_kT,'g-')
plt.plot(inf.ext_bins,inf.convolved_free_energy_kT,'r--')
PlotUtilities.lazyLabel(r"Extension ($\AA$)","Free energy","")