本文整理汇总了Python中GeneralUtil.python.PlotUtilities.title方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.title方法的具体用法?Python PlotUtilities.title怎么用?Python PlotUtilities.title使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeneralUtil.python.PlotUtilities
的用法示例。
在下文中一共展示了PlotUtilities.title方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
Base = "./"
OutBase = Base + "out/"
InFiles = [Base + "PatrickIsGreedy.pxp"]
RawData = IWT_Util.\
ReadInAllFiles(InFiles,Limit=50,
ValidFunc=PxpLoader.valid_fec_allow_endings)
# get the start/ends of the re-folding and unfolding portions
# hard coded constant for now...
# XXX for re-folding, need to add in schedule
# XXX ensure properly zeroed?
idx_end_of_unfolding = int(16100/2)
IwtData,IwtData_fold = split(RawData,idx_end_of_unfolding)
# get the titled landscape...
all_landscape = [-np.inf,np.inf]
Bounds = IWT_Util.BoundsObj(bounds_folded_nm= all_landscape,
bounds_transition_nm= all_landscape,
bounds_unfolded_nm=all_landscape,
force_one_half_N=15e-12)
OutBase = "./out/"
# get the unfolding histograms
forces_unfold = np.concatenate([r.Force for r in IwtData])
separations_unfold = np.concatenate([r.Extension for r in IwtData])
# get the folding histograms..
forces_fold = np.concatenate([r.Force for r in IwtData_fold])
separations_fold = np.concatenate([r.Extension for r in IwtData_fold])
# zero everything...
n_bins = 80
fig = PlotUtilities.figure(figsize=(12,16))
kwargs_histogram = dict(AddAverage=False,nBins=n_bins)
plt.subplot(2,1,1)
IWT_Util.ForceExtensionHistograms(separations_unfold*1e9,
forces_unfold*1e12,**kwargs_histogram)
PlotUtilities.xlabel("")
PlotUtilities.title("*Unfolding* 2-D histogram")
plt.subplot(2,1,2)
IWT_Util.ForceExtensionHistograms(separations_fold*1e9,
forces_fold*1e12,**kwargs_histogram)
PlotUtilities.title("*Folding* 2-D histogram")
PlotUtilities.savefig(fig,OutBase + "0_{:d}hist.pdf".format(n_bins))
IWT_Plot.InTheWeedsPlot(OutBase=OutBase,
UnfoldObj=IwtData,
bounds=Bounds,Bins=[40,60,80,120,200],
max_landscape_kT=None,
min_landscape_kT=None)
示例2: helical_gallery_plot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def helical_gallery_plot(helical_areas,helical_data,helical_kwargs):
axs,first_axs,second_axs = [],[],[]
offset_y = 0.2
kw_scalebars = [dict(offset_x=0.35,offset_y=offset_y),
dict(offset_x=0.35,offset_y=offset_y),
dict(offset_x=0.35,offset_y=offset_y)]
xlims = [ [None,None],[None,None],[None,15] ]
arrow_x = [0.60,0.62,0.55]
arrow_y = [0.58,0.60,0.45]
for i,a in enumerate(helical_areas):
data = helical_data[i]
kw_tmp = helical_kwargs[i]
data_landscape = landscape_data(data.landscape)
# # plot the energy landscape...
ax_tmp = plt.subplot(1,len(helical_areas),(i+1))
axs.append(ax_tmp)
kw_landscape = kw_tmp['kw_landscape']
color = kw_landscape['color']
ax_1, ax_2 = plot_landscape(data_landscape,xlim=xlims[i],
kw_landscape=kw_landscape,
plot_derivative=True)
first_axs.append(ax_1)
second_axs.append(ax_2)
PlotUtilities.tom_ticks(ax=ax_2,num_major=5,change_x=False)
last_idx = len(helical_areas)-1
ax_1.annotate("",xytext=(arrow_x[i],arrow_y[i]),textcoords='axes fraction',
xy=(arrow_x[i]+0.2,arrow_y[i]),xycoords='axes fraction',
arrowprops=dict(facecolor=color,alpha=0.7,
edgecolor="None",width=4,headwidth=10,
headlength=5))
if (i > 0):
PlotUtilities.ylabel("")
PlotUtilities.xlabel("")
if (i != last_idx):
ax_2.set_ylabel("")
PlotUtilities.no_x_label(ax_1)
PlotUtilities.no_x_label(ax_2)
PlotUtilities.title(a.plot_title,color=color)
normalize_and_set_zeros(first_axs,second_axs)
# after normalization, add in the scale bars
for i,(ax_1,ax_2) in enumerate(zip(first_axs,second_axs)):
Scalebar.x_scale_bar_and_ticks_relative(unit="nm",width=5,ax=ax_2,
**kw_scalebars[i])
PlotUtilities.no_x_label(ax_2)
示例3: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
n_samples = int(1e4)
sigma = 1
loc_arr = [-3,-1,0.5]
n_bins = 50
ylim = [0,0.6]
n_cols = 3+1
xlim = [-12,12]
bins = np.linspace(*xlim,endpoint=True,num=n_bins)
fig = PlotUtilities.figure((12,7))
plt.subplot(1,n_cols,1)
bhattacharya,x1,x2 = plot_bhattacharya(sigma,n_samples,bins=bins,
loc=-9)
plt.xlim(xlim)
PlotUtilities.tickAxisFont()
PlotUtilities.xlabel("Distribution Value")
PlotUtilities.ylabel("Probability")
PlotUtilities.legend(frameon=False)
plt.ylim(ylim)
title = p_label(bhattacharya,x1,x2)
PlotUtilities.title(title)
for i,loc in enumerate(loc_arr):
plt.subplot(1,n_cols,(i+2))
bhattacharya,x1,x2 = plot_bhattacharya(sigma,n_samples,bins,
loc=loc)
title = p_label(bhattacharya,x1,x2)
PlotUtilities.title(title)
plt.xlim(xlim)
plt.ylim(ylim)
PlotUtilities.tickAxisFont()
PlotUtilities.no_y_label()
PlotUtilities.legend(frameon=False)
PlotUtilities.xlabel("")
PlotUtilities.savefig(fig,"bcc.pdf",subplots_adjust=dict(wspace=0.1))
示例4: _main_figure
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def _main_figure(trials):
xlim = [500,1e6]
ylim=[1e-2,5e2]
style_data,style_pred = style_data_and_pred()
colors = algorithm_colors()
# picturing 3x2, where we show the 'in the weeds' plots...
plt.subplot(1,2,1)
for i,learner_trials in enumerate(trials):
TimePlot.\
plot_learner_slope_versus_loading_rate(learner_trials,
style_data=style_data[i],
style_pred=style_pred[i])
PlotUtilities.legend(loc="upper left",frameon=False)
PlotUtilities.title("")
plt.xlim(xlim)
plt.ylim(ylim)
plt.subplot(1,2,2)
TimePlot.plot_learner_prediction_time_comparison(trials,color=colors)
plt.ylim([1e3,3e6])
PlotUtilities.legend(loc="lower right",frameon=False)
PlotUtilities.title("")
示例5: rupture_plot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def rupture_plot(true,pred,fig,count_ticks=3,
scatter_kwargs=None,style_pred=None,
style_true=None,use_legend=True,count_limit=None,
color_pred=None,color_true=None,
bins_load=None,bins_rupture=None,
remove_ticks=True,lim_plot_load=None,lim_plot_force=None,
title="",distance_histogram=None,gs=None,
limit_percentile=True):
if (distance_histogram is None):
n_rows = 2
n_cols = 2
widths = [2,1]
heights = [2,1]
offset=0
else:
n_rows = 2
n_cols = 3
widths = [2,2,1]
heights = [2,2]
offset=1
if (gs is None):
gs = gridspec.GridSpec(n_rows,n_cols,width_ratios=widths,
height_ratios=heights)
subplot_f = lambda x: plt.subplot(x)
ruptures_true,loading_true = \
Learning.get_rupture_in_pN_and_loading_in_pN_per_s(true)
ruptures_pred,loading_pred = \
Learning.get_rupture_in_pN_and_loading_in_pN_per_s(pred)
if (color_pred is None):
color_pred = color_pred_def
if (color_true is None):
color_true = color_true_def
if (style_true is None):
style_true = _style_true(color_true)
if (style_pred is None):
style_pred = _style_pred(color_pred)
if (scatter_kwargs is None):
scatter_kwargs = dict(style_true=dict(label="true",**style_true),
style_predicted=dict(label="predicted",
**style_pred))
_lim_force,_bins_rupture,_lim_load,_bins_load = \
Learning.limits_and_bins_force_and_load(ruptures_pred,ruptures_true,
loading_true,loading_pred,
limit=False)
_lim_force_plot,_bins_rupture_plot,_lim_load_plot,_bins_load_plot = \
Learning.limits_and_bins_force_and_load(ruptures_pred,ruptures_true,
loading_true,loading_pred,
limit=limit_percentile)
if (bins_rupture is None):
bins_rupture = _bins_rupture_plot
if (bins_load is None):
bins_load = _bins_load_plot
if (lim_plot_load is None):
lim_plot_load = _lim_load_plot
if (lim_plot_force is None):
lim_plot_force = _lim_force_plot
if (distance_histogram is not None):
ax_hist = plt.subplot(gs[:,0])
histogram_event_distribution(**distance_histogram)
ax0 = subplot_f(gs[0,offset])
plot_true_and_predicted_ruptures(true,pred,**scatter_kwargs)
PlotUtilities.xlabel("")
plt.xlim(lim_plot_load)
plt.ylim(lim_plot_force)
PlotUtilities.title(title)
if (remove_ticks):
ax0.get_xaxis().set_ticklabels([])
ax1 =subplot_f(gs[0,offset+1])
hatch_true = true_hatch()
true_style_histogram = _histogram_true_style(color_true=color_true,
label="true")
pred_style_histogram = _histogram_predicted_style(color_pred=color_pred,
label="predicted")
# for the rupture force, we dont add the label
rupture_force_true_style = dict(**true_style_histogram)
rupture_force_true_style['label'] = None
rupture_force_pred_style = dict(**pred_style_histogram)
rupture_force_pred_style['label'] = None
rupture_force_histogram(pred,orientation='horizontal',bins=bins_rupture,
**rupture_force_pred_style)
rupture_force_histogram(true,orientation='horizontal',bins=bins_rupture,
**rupture_force_true_style)
PlotUtilities.lazyLabel("Count","","")
ax = plt.gca()
# push count to the top
ax.xaxis.tick_top()
ax.xaxis.set_label_position('top')
if (remove_ticks):
ax1.get_yaxis().set_ticklabels([])
if (count_limit is not None):
plt.xlim(count_limit)
plt.ylim(lim_plot_force)
plt.xscale('log')
ax4 = subplot_f(gs[1,offset])
n_pred,_,_ = loading_rate_histogram(pred,orientation='vertical',
bins=bins_load,
**pred_style_histogram)
n_true,_,_, = loading_rate_histogram(true,orientation='vertical',
bins=bins_load,**true_style_histogram)
#.........这里部分代码省略.........
示例6: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def run(base="./"):
"""
"""
out_base = base
data_file = base + "data/Scores.pkl"
force=False
metric_list = CheckpointUtilities.getCheckpoint(base + "cache.pkl",
Offline.get_metric_list,
force,data_file)
lim_load_max = [0,0]
lim_force_max = [0,0]
distance_limits = [0,0]
count_max = 0
distance_limits = []
coeffs_compare = []
# get the plotting limits
update_limits = Offline.update_limits
for m in metric_list:
lim_force_max = update_limits(m.lim_force,lim_force_max)
lim_load_max = update_limits(m.lim_load,lim_load_max,floor=1e-1)
count_max = max(m.counts,count_max)
distance_limits.append(m.distance_limit(True))
coeffs_compare.append(m.coefficients())
write_coeffs_file(out_base + "metric_table.tex",coeffs_compare)
distance_limits = [np.min(distance_limits),np.max(distance_limits)]
# POST: have limits...
# plot the best fold for each
out_names = []
colors_pred = algorithm_colors()
# make a giant figure, 3 rows (one per algorithm)
fig = PlotUtilities.figure(figsize=(7,8))
entire_figure = gridspec.GridSpec(3,1)
title_dict = Plotting.algorithm_title_dict()
for i,m in enumerate(metric_list):
x,name,true,pred = m.x_values,m.name,m.true,m.pred
best_param_idx = m.best_param_idx
out_learner_base = "{:s}{:s}".format(out_base,name)
color_pred = colors_pred[i]
# define the styles for the histogram
xlabel_histogram = r"Distance [x$_k$]" \
if (i == len(metric_list)-1) else ""
# get the distance information we'll need
distance_kw = Plotting.\
event_error_kwargs(m,color_pred=color_pred,
distance_limits=distance_limits,
xlabel=xlabel_histogram)
gs = gridspec.GridSpecFromSubplotSpec(2, 3, width_ratios=[2,2,1],
height_ratios=[2,1],
subplot_spec=entire_figure[i],
wspace=0.35,hspace=0.4)
# plot the metric plot
Plotting.rupture_plot(true,pred,
lim_plot_load=lim_load_max,
lim_plot_force=lim_force_max,
color_pred=color_pred,
count_limit=[0.5,count_max*5],use_legend=(i==0),
distance_histogram=distance_kw,gs=gs,
fig=fig)
PlotUtilities.title(title_dict[name],x=-2,y=3.85,color=color_pred,
alpha=1)
# individual plot labels
n_subplots = 5
n_categories = len(metric_list)
letters = string.uppercase[:n_categories]
letters = [ ["{:s}{:d}".format(s,n+1) for n in range(n_subplots)]
for s in letters]
flat_letters = [v for list_of_v in letters for v in list_of_v]
PlotUtilities.label_tom(fig,flat_letters,loc=(-0.22,1.14))
final_out_path = out_base + "landscape.pdf"
PlotUtilities.save_twice(fig,final_out_path + ".png",final_out_path +".svg",
subplots_adjust=dict(left=0.10,
hspace=0.4,
wspace=0.2,top=0.95))
示例7: analyze_data
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def analyze_data(raw_data,out_dir):
GenUtilities.ensureDirExists(out_dir)
force_iwt = False
adhesion_end_m = 20e-9
offset_force_N = 7.1e-12
n_bins_zoom = 75
n_bins_helix_a = 100
plot_region_info = [\
slice_area([adhesion_end_m,75e-9],"Full (no adhesion)",n_bins_helix_a),
slice_area([20e-9,27e-9],"Helix A",n_bins_helix_a),
slice_area([50e-9,75e-9],"Helix E",n_bins_zoom),
slice_area([57e-9,70e-9],"Helix E (detailed)",n_bins_zoom)
]
# # get the slice we care about for each...
sliced_data = [ [] for _ in plot_region_info]
for i,d in enumerate(raw_data):
d.Force -= offset_force_N
for i,a in enumerate(plot_region_info):
slice_tmp = FEC_Util.slice_by_separation(d,*a.ext_bounds)
sliced_data[i].append(slice_tmp)
# # get the IWT of both regions
n_bins = 100
n_bins_helix=200
n_bins_helix_zoom = 60
iwt_f = InverseWeierstrass.FreeEnergyAtZeroForce
iwt_helices = []
for i,a in enumerate(plot_region_info):
save_name = (out_dir + a.save_name)
iwt_helix_data_tmp = IWT_Util.convert_to_iwt(sliced_data[i])
iwt_tmp = CheckpointUtilities.getCheckpoint(save_name,iwt_f,
force_iwt,
iwt_helix_data_tmp,
NumBins=a.n_bins)
iwt_helices.append(iwt_tmp)
# plot each of the subregions
for i,(a,data) in enumerate(zip(plot_region_info,sliced_data)):
fig = PlotUtilities.figure()
IWT_Plot.plot_free_landscape(iwt_helices[i])
fmt_iwt()
if (i ==0):
plt.axvspan(0,min(iwt_helices[i].Extensions * 1e9),alpha=0.3,
color='r',label="Adhesion region",hatch='/')
PlotUtilities.title(a.plot_title)
PlotUtilities.savefig(fig,out_dir + a.save_name + "_iwt_.png")
# # make the heat map plots we want
for i,(a,data) in enumerate(zip(plot_region_info,sliced_data)):
fig = PlotUtilities.figure()
FEC_Plot.heat_map_fec(sliced_data[i])
PlotUtilities.title(a.plot_title)
PlotUtilities.savefig(fig,out_dir + a.save_name + "_heat_.png")
# plot each fec individually
to_x = lambda x : x*1e9
to_y = lambda y : y*1e12
# plot fec for each region(after the first, which is just the 'full_data')
for i,(a,d) in enumerate(zip(plot_region_info,sliced_data)):
for fec in d:
fec_name = GenUtilities.file_name_from_path(fec.Meta.SourceFile)
save_name = out_dir + "regions_" + a.save_name + fec_name + ".png"
fig = PlotUtilities.figure()
FEC_Plot._fec_base_plot(to_x(fec.Separation),to_y(fec.Force))
plt.xlim(1e9 * np.array(a.ext_bounds))
PlotUtilities.savefig(fig,save_name)
# plot each landscape entirely
full_data = sliced_data[0]
for i,d in enumerate(raw_data):
fig = PlotUtilities.figure()
plt.plot(to_x(d.Separation),to_y(d.Force),color='k',alpha=0.3)
sep_sliced = full_data[i].Separation
FEC_Plot._fec_base_plot(to_x(sep_sliced),to_y(full_data[i].Force),
style_data=dict(color='r',alpha=0.3))
plt.xlim([0,2*to_x(max(sep_sliced))])
plt.ylim([-50,300])
file_n = GenUtilities.file_name_from_path(d.Meta.SourceFile)
PlotUtilities.savefig(fig,out_dir + "out{:d}_{:s}.png".format(i,file_n))
示例8: get_supplemental_figure
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def get_supplemental_figure(output_path,trials):
"""
creates the 'supplemental' timing figure (for use in the appendix)
Args:
see get_main_figure
"""
# XXX should be able to get curve numbers of out pickle
curve_numbers = [1,2,5,10,30,50,100,150,200]
# make a plot comparing *all* of the Big-O plots of the data
plt.subplot(3,2,1)
# sort the times by their loading rates
max_time = max([l.max_time_trial() for l in trials])
min_time = min([l.min_time_trial() for l in trials])
fig = PlotUtilities.figure((16,16))
# plot the Theta(n) coefficient for each
n_rows = 3
n_cols = 2
style_data,style_pred = style_data_and_pred()
x_label = "C (number of curves)"
y_label = "Runtime (s)"
x_label_big_o = "N (points per curve)"
y_label_big_o = "Runtime per curve (s) "
ylim_big_o = [1e-3,1e3]
for i,learner_trials in enumerate(trials):
description = TimePlot.learner_name(learner_trials)
plot_idx = i*n_cols+1
plt.subplot(n_rows,n_cols,plot_idx)
# plot the timing veruses loading rate and number of points
TimePlot.plot_learner_versus_loading_rate_and_number(learner_trials)
fudge_x_low = 20
fudge_x_high = 2
fudge_y = 4
plt.ylim(ylim_big_o)
plt.xlim([1/fudge_x_low,max(curve_numbers)*fudge_x_high])
plt.yscale('log')
plt.xscale('log')
useLegend= (i == 0)
last = (i == (len(trials) - 1))
PlotUtilities.lazyLabel("","","",useLegend=useLegend,frameon=True,
legend_kwargs=dict(fontsize=15))
if (not useLegend):
plt.gca().legend().remove()
PlotUtilities.ylabel(y_label)
if (last):
PlotUtilities.xlabel(x_label)
PlotUtilities.title("Total runtime ({:s})".\
format(description))
plt.subplot(n_rows,n_cols,plot_idx+1)
style_dict = dict(style_data=style_data[i],style_pred=style_pred[i])
TimePlot.plot_learner_slope_versus_loading_rate(learner_trials,
**style_dict)
PlotUtilities.title("Runtime/curve of length N ({:s})".\
format(description))
if (last):
PlotUtilities.xlabel(x_label_big_o)
else:
PlotUtilities.xlabel("")
PlotUtilities.ylabel(y_label_big_o)
plt.ylim(ylim_big_o)
PlotUtilities.label_tom(fig,loc=(-0.05,1.05))
PlotUtilities.savefig(fig, output_path)
# make a plot comparing the constants
pass
示例9: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import title [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
abs_dir = "./"
cache_dir = "./cache/"
out_dir = "./out/"
force_iwt = True
GenUtilities.ensureDirExists(cache_dir)
GenUtilities.ensureDirExists(out_dir)
examples = FEC_Util.\
cache_individual_waves_in_directory(pxp_dir=abs_dir,force=False,
cache_dir=cache_dir,limit=20)
# filter all the fecs
good_splits_original = copy.deepcopy(examples)
n_points_f = lambda x: int(np.ceil(2e-3*s.Force.size))
examples = [FEC_Util.GetFilteredForce(s,n_points_f(s))
for s in examples]
### XXX TODO
# (1) correct for interference artifact
# (2) get regions for WLC fit
# (3) fit WLC to regions
# (4) Invert WLC, determine dsDNA and ssDNA contour lengths at each force
# split the fecs...
split_fecs = []
for i,ex in enumerate(examples):
split_fec = Analysis.zero_and_split_force_extension_curve(ex)
retract = split_fec.retract
split_fecs.append(split_fec)
# align them by the contour lengths (assuming we have at least xnm to
# work with
working_distance_nm = 30
coeffs,idx = CheckpointUtilities.\
getCheckpoint("./polymer.pkl",get_polymer_coefficients,False,
split_fecs,working_distance_nm)
# get the split fecs we could actually fit
good_splits = [split_fecs[i] for i in idx]
# align all the retracts by the contour lenghts
contour_L0 = [c[0] for c in coeffs]
arbitrary_offset = 90e-9
for L0,split_fec in zip(contour_L0,good_splits):
split_fec.retract.Separation -= L0
split_fec.retract.Separation += arbitrary_offset
# POST: retracts are all aligned.
# for a simple IWT, only look at until the unfolding region
unfolding_retracts = [get_unfolding_slice_only(split_fec)
for e in good_splits]
refolding_experiments = \
[get_unfolding_and_refolding_slice(r) for r in good_splits]
# get the extension maximum and minimum bounds.
ext_min_m = lambda s: min(s.Separation)
ext_max_m = lambda s: min(s.Separation) + 50e-9
# slice the refolding experiments
sliced_refolds = [FEC_Util.slice_by_separation(s,ext_min_m(s),ext_max_m(s))
for s in refolding_experiments]
# split the refolding experiments into iwt
iwt_refolds = [ \
WeierstrassUtil.split_into_iwt_objects(s,
fraction_for_vel=0.1,
f_split=IWT_Util.split_by_max_sep)
for s in sliced_refolds]
unfolding_objs = [u[0] for u in iwt_refolds]
refolding_objs = [u[1] for u in iwt_refolds]
# slice to just the first L0 (before the final rupture)
max_meters = arbitrary_offset
final_rupture_only = [FEC_Util.slice_by_separation(u,-np.inf,max_meters)
for u in unfolding_retracts]
# convert to the type iwt needs
final_unfolding_iwt = \
[WeierstrassUtil.convert_to_iwt(r,frac_vel=0.2)
for r in final_rupture_only]
# get the iwt tx
n_bins = 200
energy_landscape_unfolding = CheckpointUtilities.\
getCheckpoint("./landscape.pkl",
InverseWeierstrass.FreeEnergyAtZeroForce,force_iwt,
final_unfolding_iwt,NumBins=n_bins)
# make a heat map of all retracts
fig = PlotUtilities.figure()
FEC_Plot.heat_map_fec([r.retract for r in good_splits])
PlotUtilities.title("FEC Heat map, aligned by L0, N={:d}".\
format(len(good_splits)))
PlotUtilities.savefig(fig,out_dir + "heat.png")
# make a heat map of just the region for the unfolding iwt
fig = PlotUtilities.figure()
FEC_Plot.heat_map_fec(final_rupture_only)
PlotUtilities.title("FEC Final unfolding heat map, aligned by L0, N={:d}".\
format(len(good_splits)))
PlotUtilities.savefig(fig,out_dir + "heat_unfolding.png")
# make a heat map of the unfolding and refolding experiment data
fig = PlotUtilities.figure(figsize=(4,7))
plt.subplot(2,1,1)
FEC_Plot.heat_map_fec(unfolding_objs)
plt.subplot(2,1,2)
#.........这里部分代码省略.........