本文整理汇总了Python中GeneralUtil.python.PlotUtilities.set_legend_kwargs方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.set_legend_kwargs方法的具体用法?Python PlotUtilities.set_legend_kwargs怎么用?Python PlotUtilities.set_legend_kwargs使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeneralUtil.python.PlotUtilities
的用法示例。
在下文中一共展示了PlotUtilities.set_legend_kwargs方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: plot_true_and_predicted_ruptures
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import set_legend_kwargs [as 别名]
def plot_true_and_predicted_ruptures(true,predicted,title="",
loc='upper left',
style_predicted=None,style_true=None):
"""
given rupture objects, plots the true and predicted values of rupture
force verus loading rate
Args:
true / predicted: list of true and predicted ruptures. dont have to
match up, but should be all from the same FECs
title: of the plot
label_true: for the legend marker on the true objects
style_predicted: what to make the predicted ones look like. if None,
defsults to little blue x's.
Returns:
Nothing
"""
if (style_predicted is None):
style_predicted = dict(label="predicted",linewidth=1.25,
**_style_pred_def('k'))
if (style_true is None):
style_true = dict(label="true",**_style_true_def('g'))
marker_size = 4
style_true_marker = dict(**style_true)
style_true_marker['alpha'] = 0.5
_plot_rupture_objects(predicted,marker='x',linewidth=1.25,linestyle='None',
markersize=marker_size,color=style_predicted['color'],
label=style_predicted['label'])
_plot_rupture_objects(true,marker='o',linewidth=1.25,markersize=marker_size,
markerfacecolor="None",markeredgecolor='g',
linestyle='None',**style_true_marker)
PlotUtilities.lazyLabel("Loading Rate (pN/s)","Rupture Force (pN)",
title,frameon=True,
legend_kwargs=dict(numpoints=1,markerscale=2),
loc=loc)
PlotUtilities.set_legend_kwargs()
示例2: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import set_legend_kwargs [as 别名]
def run():
"""
"""
landscape = CheckpointUtilities.lazy_load("./example_landscape.pkl")
# make the landscape relative
landscape.offset_energy(min(landscape.G_0))
landscape.offset_extension(min(landscape.q))
# get the landscape, A_z in kT. Note that we convert z->q, so it is
# really A(q=z-A'/k)
A_q = landscape.A_z
A_q_kT = (A_q * landscape.beta)
# numerically differentiate
to_y = lambda x: x * 1e12
landscape_deriv_plot = to_y(np.gradient(A_q)/np.gradient(landscape.q))
# compare with the A' term. XXX should just save it...
weighted_deriv_plot = to_y(landscape.A_z_dot)
x_plot = landscape.q * 1e9
label_A_q_dot = r"$\dot{A}$"
label_finite = label_A_q_dot + r" from finite difference"
label_work = r"{:s}$ =<<F>>$".format(label_A_q_dot)
kw_weighted = dict(color='m',label=label_work)
fig = PlotUtilities.figure((3.5,5))
# # plot just A(q)
ax_A_q = plt.subplot(3,1,1)
plt.plot(x_plot,A_q_kT,color='c',label="$A$")
PlotUtilities.lazyLabel("","Helmholtz A ($k_\mathrm{b}T$)","",
loc=(0.5,0.8),frameon=True)
PlotUtilities.set_legend_kwargs(ax=ax_A_q,background_color='w',linewidth=0)
PlotUtilities.no_x_label(ax_A_q)
x0 = 14.5
dx = 0.05
xlim = [x0,x0+dx]
# plot the data red where we will zoom in
where_region = np.where( (x_plot >= xlim[0]) &
(x_plot <= xlim[1]))
zoom_x = x_plot[where_region]
zoom_y = A_q_kT[where_region]
ylim = [min(zoom_y),max(zoom_y)]
dy = ylim[1]-ylim[0]
# add in some extra space for the scalebar
ylim_fudge = 0.7
ylim = [ylim[0],ylim[1] + (ylim_fudge * dy)]
lazy_common = dict(title_kwargs=dict(loc='left'))
plt.axvspan(*xlim,color='r',alpha=0.3,edgecolor="None")
plt.plot(zoom_x,zoom_y,color='r')
# plot a zoomed in axis, to clarify why it probably goes wrong
axins = zoomed_inset_axes(ax_A_q, zoom=250, loc=4,borderpad=1)
axins.plot(x_plot, A_q_kT,linewidth=0.1,color='r')
axins.set_xlim(*xlim) # apply the x-limits
axins.set_ylim(*ylim) # apply the y-limits
PlotUtilities.no_x_anything(axins)
PlotUtilities.no_y_anything(axins)
# add in a scale bar for the inset
unit_kw_x = dict(fmt="{:.0f}",value_function=lambda x: x*1000)
common = dict(line_kwargs=dict(linewidth=1.0,color='k'))
# round to ~10s of pm
x_width = np.around(dx/3,2)
y_width = np.around(dy/3,1)
x_kw = dict(width=x_width,unit="pm",unit_kwargs=unit_kw_x,
fudge_text_pct=dict(x=0.2,y=-0.2),**common)
y_kw = dict(height=y_width,unit=r"$k_\mathrm{b}T$",
unit_kwargs=dict(fmt="{:.1f}"),**common)
Scalebar.crossed_x_and_y_relative(ax=axins,
offset_x=0.45,
offset_y=0.7,
x_kwargs=x_kw,
y_kwargs=y_kw)
# # plot A_z_dot
ax_deriv_both = plt.subplot(3,1,2)
# divide by 1000 to get uN
plt.plot(x_plot,landscape_deriv_plot/1e6,color='k',
label=label_finite)
plt.plot(x_plot,weighted_deriv_plot/1e6,**kw_weighted)
PlotUtilities.lazyLabel("",
"$\dot{A}(q)$ ($\mathrm{\mu}$N)",
"$\Downarrow$ Determine derivative (both methods)",
**lazy_common)
PlotUtilities.no_x_label(ax_deriv_both)
# # plot A_z_dot, but just the weighted method (ie: not super wacky)
ax_deriv_weighted = plt.subplot(3,1,3)
plt.plot(x_plot,weighted_deriv_plot,linewidth=1,**kw_weighted)
title_last = "$\Downarrow$ Work-weighted method is reasonable "
PlotUtilities.lazyLabel("Extension (nm)","$\dot{A}(q)$ (pN)",
title_last,**lazy_common)
PlotUtilities.savefig(fig,"./finite_differences.png",
subplots_adjust=dict(hspace=0.2))