当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.lazyLabel方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.lazyLabel方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.lazyLabel方法的具体用法?Python PlotUtilities.lazyLabel怎么用?Python PlotUtilities.lazyLabel使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.lazyLabel方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: SavePlot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def SavePlot(SortByZ,FullName,SaveName):
    Objs = FEC_Util.ReadInData(FullName)
    Tmp = Objs[0]
    if (SortByZ):
        ArgSort = np.argsort(Tmp.Zsnsr)
        Tmp.Zsnsr = Tmp.Zsnsr[ArgSort]
        Tmp.Force = Tmp.Force[ArgSort]
        Offset = 150
    else:
        Offset = 0
    # set up the y limits in pN
    ylim = [Offset-20,Offset+25]
    fig = pPlotUtil.figure()
    plt.subplot(2,1,1)
    FullPlot(Tmp)
    pPlotUtil.lazyLabel("Stage position (nm)","Force (pN)","Flickering for FEC",
                        frameon=True)
    # x limits for 'zoomed in'
    plt.xlim([30,40])
    plt.ylim(ylim)
    plt.subplot(2,1,2)
    FullPlot(Tmp)
    pPlotUtil.lazyLabel("Stage position (nm)","Force (pN)","",frameon=True)
    # x limits for 'zoomed in'
    plt.xlim([36,36.5])
    plt.ylim(ylim)
    pPlotUtil.savefig(fig,SaveName)
开发者ID:prheenan,项目名称:Research,代码行数:29,代码来源:Main_6_7_flickering_example.py

示例2: FEC_AlreadySplit

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def FEC_AlreadySplit(Appr,Retr,
                     XLabel = "Separation (nm)",
                     YLabel = "Force (pN)",
                     ConversionOpts=def_conversion_opts,
                     PlotLabelOpts=dict(),
                     PreProcess=False,
                     NFilterPoints=50,
                     LegendOpts=dict(loc='best'),
                     **kwargs):
    """

    Args:
        XLabel: label for x axis
        YLabel: label for y axis
        ConversionOpts: see FEC_Util.SplitAndProcess
        PlotLabelOpts: see arguments after filtering of ApproachRetractCurve
        PreProcess: if true, pre-processes the approach and retract separately
        (ie: to zero and flip the y axis).
        NFilterPoints: see FEC_Util.SplitAndProcess, for Savitsky-golay
        PreProcess: passed to 

    """
    ApprCopy = FEC_Util.UnitConvert(Appr,**ConversionOpts)
    RetrCopy = FEC_Util.UnitConvert(Retr,**ConversionOpts)
    if (PreProcess):
        ApprCopy,RetrCopy = FEC_Util.PreProcessApproachAndRetract(ApprCopy,
                                                                  RetrCopy,
                                                                  **kwargs)
    _ApproachRetractCurve(ApprCopy,RetrCopy,
                          NFilterPoints=NFilterPoints,**PlotLabelOpts)
    PlotUtilities.lazyLabel(XLabel,YLabel,"")
    PlotUtilities.legend(**LegendOpts)
开发者ID:prheenan,项目名称:Research,代码行数:34,代码来源:FEC_Plot.py

示例3: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    file_name = "defl.ibw"
    defl_volts_wave = PxpLoader.read_ibw_as_wave(file_name)
    defl_volts = defl_volts_wave.DataY
    invols_nm_per_volt = 154.8
    spring_pN_per_nM = 5.70
    force_pN = defl_volts * invols_nm_per_volt * spring_pN_per_nM
    # zero out to the maximum
    force_pN -= np.mean(force_pN)
    data_interval_in_s = 1/500e3
    rate = 1/float(data_interval_in_s) # data rate in Hz
    taus = np.logspace(-5,2,num=50,base=10) #  tau-values in seconds
    # fractional frequency data
    (taus_used, adev, adeverror, adev_n) = \
        allantools.adev(force_pN, data_type='freq', rate=rate, taus=taus)
    fig = PlotUtilities.figure()
    plt.errorbar(x=taus_used,y=adev,yerr=2*adeverror,label="95% C.I.")
    plt.xscale('log')
    plt.yscale('log')
    plt.axhline(1,color='r',linestyle='--',label="1 pN")
    PlotUtilities.lazyLabel("Averaging time (s)","Force (pN)","")
    PlotUtilities.savefig(fig,"out.png")
开发者ID:prheenan,项目名称:Research,代码行数:33,代码来源:main_allan.py

示例4: cross_validation_distance_metric

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def cross_validation_distance_metric(x_values,train_scores,valid_scores,
                                     to_true):
    """
    Plots the cross validation training and validation distance metric

    Args:
        x_values: x values
        <train/valid>_scores: the training and validation scores used
        to_true: distance metric plotted is *from* predicted *to* true 
        (ie: something like recall) if true, otherwise vice versa

    Returns:
        nothing
    """
    # get the metrics and errors by parameters
    x_train,train_dist,train_dist_std = \
        Learning.median_dist_metric(x_values,train_scores,to_true=to_true)
    x_valid,valid_dist,valid_dist_std = \
        Learning.median_dist_metric(x_values,valid_scores,to_true=to_true)
    y_plot = lambda y: y * 1e9
    train_dist_plot,train_error_plot = y_plot(train_dist),y_plot(train_dist_std)
    valid_dist_plot,valid_error_plot = y_plot(valid_dist),y_plot(valid_dist_std)
    plt.errorbar(x=x_train,y=train_dist_plot,yerr=train_error_plot,
                 **style_train)
    plt.errorbar(x=x_valid,y=valid_dist_plot,yerr=valid_error_plot,
                 **style_valid)
    plt.xscale('log')
    plt.yscale('log')
    PlotUtilities.lazyLabel("Tuning Parameter","Median event distance (nm)","",
                            frameon=False)
开发者ID:prheenan,项目名称:Research,代码行数:32,代码来源:Plotting.py

示例5: plot_classification

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def plot_classification(split_object,scoring_object):
    """
    plots the classification of a single object

    Args:
         split_object: whatever was classified
         scoring_object: Scoring.score object, used on split_object
    Returns:
         Nothing
    """
    retract = split_object.retract
    time,force = retract.Time,retract.Force
    true_idx,pred_idx =  scoring_object.idx_true,scoring_object.idx_predicted
    boolean_true,boolean_predicted = scoring_object.get_boolean_arrays(time)
    plt.subplot(2,1,1)
    plt.plot(time,force,color='k',alpha=0.3)
    highlight_events(true_idx,time,force,color='r',linestyle='-',
                     label="true events")
    highlight_events(pred_idx,time,force,color='b',linestyle='None',
                     marker='.',label="predicted events")
    PlotUtilities.lazyLabel("","Force(pN)","")
    plt.subplot(2,1,2)
    plt.plot(time,boolean_true,linewidth=4,label="True events",color='b')
    plt.plot(time,boolean_predicted,label="Predicted",color='r',alpha=0.3)
    PlotUtilities.lazyLabel("Time (s)","Force(pN)","")
开发者ID:prheenan,项目名称:Research,代码行数:27,代码来源:Plotting.py

示例6: landscape_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def landscape_plot(landscape,landscape_rev,landscape_rev_only,kT,f_one_half):
    ToX = lambda x: x*1e9
    landscape_rev_kT = landscape_rev.G_0/kT
    landscape_fwd_kT = landscape.G_0/kT
    landscape_rev_only_kT = landscape_rev_only.G_0/kT
    ext_fwd = landscape_rev.q
    ext_rev = landscape.q
    # tilt one of the landscapes
    ext_tilt = ext_fwd
    landscape_tilt_kT = landscape_rev_kT
    landscape_fonehalf_kT = (landscape_tilt_kT*kT-ext_tilt* f_one_half)/kT
    landscape_fonehalf_kT_rel = landscape_fonehalf_kT-min(landscape_fonehalf_kT)
    xlim = [195,265]
    plt.subplot(2,1,1)
    sanit = lambda x: x - min(x)
    # add in the offsets, since we dont simulate before...
    plt.plot(ToX(ext_fwd),sanit(landscape_rev_kT)+20,color='r',alpha=0.6,
             linestyle='-',linewidth=3,label="Bi-directional")
    plt.plot(ToX(ext_rev),sanit(landscape_fwd_kT)+75,color='b',
             linestyle='--',label="Only Forward")
    plt.plot(ToX(landscape_rev_only.q),sanit(landscape_rev_only_kT)+20,
             "g--",label="Only Reverse")
    PlotUtilities.lazyLabel("","Free Energy (kT)",
                            "Hummer 2010, Figure 3")
    plt.xlim(xlim)
    plt.ylim([0,300])
    plt.subplot(2,1,2)
    plt.plot(ToX(ext_tilt),2.5+landscape_fonehalf_kT_rel,'g^',
             markevery=10)
    plt.xlim(xlim)
    plt.ylim([0,25])
    PlotUtilities.lazyLabel("Extension q (nm)","Energy at F_(1/2) (kT)","")
开发者ID:prheenan,项目名称:BioModel,代码行数:34,代码来源:MainTesting.py

示例7: distance_distribution_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def distance_distribution_plot(learner,box_kwargs=None,**kwargs):
    """
    plots the distribution of distances to/from predicted events from/to
    actual events, dependning on kwargs
    
    Args:
        learner: the learner object to use
        kwargs: passed to event_distance_distribution (ie: to_true=T/F)
    """
    train_scores = learner._scores_by_params(train=True)
    valid_scores = learner._scores_by_params(train=False)
    if (box_kwargs is None):
        box_kwargs = dict(whis=[5,95])
    name = learner.description.lower()
    x_values = learner.param_values()
    train_dist = Learning.event_distance_distribution(train_scores,**kwargs)
    valid_dist = Learning.event_distance_distribution(valid_scores,**kwargs)
    dist_plot = lambda x: [v for v in x]
    train_plot = dist_plot(train_dist)
    valid_plot = dist_plot(valid_dist)
    plt.boxplot(x=train_plot,**box_kwargs)
    plt.boxplot(x=valid_plot,**box_kwargs)
    plt.gca().set_yscale('log')
    PlotUtilities.lazyLabel("Tuning parameter","Distance Distribution (idx)",
                            "Event distributions for {:s}".format(name),
                            frameon=False)
开发者ID:prheenan,项目名称:Research,代码行数:28,代码来源:Plotting.py

示例8: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def run(base="./"):
    """
    
    """
    name = "examples.pdf"
    data_base = base + "data/"
    file_names = ["protein","fast_unfolding","low-snr","ringing"]
    kw = dict(cache_directory=data_base,force=False)
    file_paths = [data_base + f +".csv" for f in file_names]
    cases = [read_and_cache_file(f,**kw) for f in file_paths]
    for c in cases:
        split_fec = Analysis.zero_and_split_force_extension_curve(c)
        name = c.Meta.Name
        num = 0
        retract_idx = split_fec.get_predicted_retract_surface_index()
        split_fec.retract.Force -= \
            np.percentile(split_fec.retract.Force[retract_idx:],25)
        predicted_event_idx = Detector.predict(c,threshold=1e-2)
        fig = PlotUtilities.figure((8,4))
        plot_retract_with_events(split_fec)
        num = label_and_save(fig=fig,name=name,num=num)
        fig = PlotUtilities.figure((8,4))
        plot_events_by_colors(split_fec,predicted_event_idx)
        num = label_and_save(fig=fig,name=name,num=num)
        fig = PlotUtilities.figure((6,10))
        plt.subplot(2,1,1)
        plot_events_by_colors(split_fec,predicted_event_idx,plot_filtered=True)
        PlotUtilities.lazyLabel("","Force (pN)","")
        PlotUtilities.no_x_label()
        plt.subplot(2,1,2)
        plot_state_transition_diagram(split_fec,predicted_event_idx)
        num = label_and_save(fig=fig,name=name,num=num,ylabel="State")
开发者ID:prheenan,项目名称:Research,代码行数:34,代码来源:main_figure_pathological.py

示例9: plot_learner_versus_loading_rate_and_number

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def plot_learner_versus_loading_rate_and_number(learner_trials):    
    """
    makes a plot of the runtimes versus number of force extension curves
    for each loading rate used.
    
    Args:
        learner_trials: a single learner object
    Returns:
        nothing, makes a pretty plot
    """
    styles = [dict(color='r',marker='x',linestyle='--'),
              dict(color='b',marker='o',linestyle='-'),
              dict(color='k',marker='v',linestyle='-.'),
              dict(color='g',marker='s',linestyle='-',linewidth=3),
              dict(color='m',marker='*',linestyle='-.',linewidth=3),
              dict(color='k',marker='8',linestyle='-',linewidth=2),
              dict(color='r',marker='p',linestyle='-.',linewidth=2),
              dict(color='b',marker='d',linestyle='--'),
              dict(color='k',marker='<',linestyle='-'),
              dict(color='g',marker='+',linestyle='-.')]
    inf = timing_info(learner_trials)
    pts,xerr = _timing_plot_pts_and_pts_error(inf,factor=1)
    for i,(num,mean,yerr,vel) in enumerate(zip(inf.nums,inf.means,inf.stdevs,
                                               inf.velocities)):
        style = styles[i % len(styles)]
        velocity_label = r"v={:4d}nm/s".format(int(vel))
        number_pretty = r"N$\approx$"  + pretty_exp(pts[i])
        label = "{:s}\n({:s})".format(velocity_label,number_pretty)
        plt.errorbar(x=num,y=mean,yerr=yerr,label=number_pretty,alpha=0.7,
                     **style)
    title = "Runtime verus loading rate and number of curves\n" + \
           "(N, points/curve, in parenthesis) "
    PlotUtilities.lazyLabel("Number of Force-Extension Curves","Time",title)
开发者ID:prheenan,项目名称:Research,代码行数:35,代码来源:TimePlot.py

示例10: fmt

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def fmt(remove_x_labels=True,remove_y_labels=True):
    ax = plt.gca()
    if (remove_x_labels):
        ax.xaxis.set_ticklabels([])
    if (remove_y_labels):
        ax.yaxis.set_ticklabels([])
    PlotUtilities.lazyLabel("","","")
    plt.ylim([-25,80])
    plt.xlim([-100,700])
开发者ID:prheenan,项目名称:Research,代码行数:11,代码来源:main_figure_cartoon.py

示例11: heatmap_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def heatmap_plot(heatmap_data,amino_acids_per_nm,kw_heatmap=dict()):
    ax_heat = plt.gca()
    make_heatmap(*heatmap_data,kw_heatmap=kw_heatmap)
    PlotUtilities.lazyLabel("","Force (pN)","")
    # make a second x axis for the number of ammino acids 
    xlim_fec = plt.xlim()
    limits = np.array(xlim_fec) * amino_acids_per_nm
    tick_kwargs = dict(axis='both',color='w',which='both')                                 
    ax_heat.tick_params(**tick_kwargs)                                         
    plt.xlim(xlim_fec)
开发者ID:prheenan,项目名称:Research,代码行数:12,代码来源:main_landscapes.py

示例12: probability_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def probability_plot(inf,slice_eq):
    plt.subplot(2,1,1)
    plt.plot(inf.ext_bins_safe,inf.p_k)
    plt.plot(inf.ext_bins,inf.P_q,'r--')
    plt.plot(inf.ext_interp,inf.p_k_interp,'g-')
    PlotUtilities.lazyLabel("","PDF","")    
    plt.subplot(2,1,2)
    plt.plot(inf.ext_bins_safe,inf.free_energy_kT,'g-')
    plt.plot(inf.ext_bins,inf.convolved_free_energy_kT,'r--')
    PlotUtilities.lazyLabel(r"Extension ($\AA$)","Free energy","")    
开发者ID:prheenan,项目名称:Research,代码行数:12,代码来源:main_equilibrium.py

示例13: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def run():
    """
    Describes why we are picking the fluorophores we are
    """
    # get the excitation filter
    filter_file = "lumencor_631_28_nm.txt"
    arr = np.loadtxt(filter_file,skiprows=1)
    wavelength,filter_value = arr[:,0],arr[:,1]
    # convert from 0 to 1 transmission (from 0 to 100)
    filter_value /= 100
    # get the fluorophore
    # (see: http://www.fluorophores.tugraz.at/substance/418)
    fluorophore_file = "atto_5382.csv"
    arr = np.loadtxt(fluorophore_file,skiprows=1,delimiter=";",
                     usecols=(0,1,2,3))
    wavelength_fluorophore_excitation_nm,excitation = arr[:,0],arr[:,1]
    wavelength_fluorophore_emission_nm,emission = arr[:,2],arr[:,3]
    # get the emission filter 
    # see: laser2000.co.uk/semrock_filter.php?code=FF01-680/42-25
    emission_filter_file = "FF01-680_42.txt"
    arr_emit = np.loadtxt(emission_filter_file,skiprows=4)
    wavelength_emission_filter,emission_filter = arr_emit[:,0],arr_emit[:,1]
    # plot the fluorophores
    label_excite_emit = "\n({:s})".format(fluorophore_file)
    wavelength_limits_nm = [500,800]
    fig = PlotUtilities.figure((5,6))
    plt.subplot(2,1,1)
    plt.plot(wavelength,filter_value,
             label=("Filter (excitation)\n" +  filter_file))
    plt.plot(wavelength_fluorophore_excitation_nm,excitation,
             label="Fluorophore Excitation" + label_excite_emit,
             linestyle='--')
    PlotUtilities.lazyLabel("","Excitation efficiency","")
    plt.xlim(wavelength_limits_nm)
    PlotUtilities.no_x_label()
    plt.subplot(2,1,2)
    plt.plot(wavelength_emission_filter,emission_filter,
             label="Filter (emission) \n" + emission_filter_file)
    plt.plot(wavelength_fluorophore_emission_nm,emission,
             label="Flurophore Emission" + label_excite_emit,
             linestyle='--')
    plt.xlim(wavelength_limits_nm)
    PlotUtilities.lazyLabel("Wavelength (nm)","Emission efficiency","")
    PlotUtilities.savefig(fig,"./filter_comparisons.png")
    p1607F,_ = CommonPrimerUtil.Get1607FAnd3520R("../..")
    # add a dbco and a fluorophore...
    seq_full = [IdtUtil.Dbco5Prime()] + [s for s in p1607F] + \
               [IdtUtil.atto_633()]
    # get the IDT order
    opts = dict(Scale=IdtUtil.Scales._100NM,
                Purification=IdtUtil.Purifications.HPLC)
    order = IdtUtil.\
            SequencesAndNamesTuplesToOrder( [(seq_full,"AzideTestFluorophore")],
                                            **opts)
    IdtUtil.PrintAndSave(order,"./test_azide_fluorophore.txt")
开发者ID:prheenan,项目名称:Research,代码行数:57,代码来源:main_fluorescent_primers.py

示例14: plot_learner_slope_versus_loading_rate

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def plot_learner_slope_versus_loading_rate(learner_trials,style_data=None,
                                           style_pred=None,min_pred=1e-3):
    """
    Makes a plot of the (slope of runtime versus number of curves) versus
    loading rate

    Args:
        learner_trials: a single learner object
        style_<data/pred>: style for the data points and predictions
    Returns:
        nothing, makes a pretty plot
    """
    if (style_data is None):
        style_data = dict(color='r',linestyle="None",marker='o')
    if (style_pred is None):
        style_pred = dict(color='b',linestyle="--")
    inf = timing_info(learner_trials)
    marker =style_data['marker']
    params,params_std = get_loading_rate_slopes_and_errors(inf)
    # the slope is the time per force extension curve (less an offset; get that
    # per loading rate
    velocities = inf.velocities
    x,xerr = _timing_plot_pts_and_pts_error(inf)
    coeffs,coeffs_err,x_pred,y_pred = get_linear_runtime(x,params)
    # fit a linear model to the runtime
    fudge = 2
    plt.plot(x=x,xerr=xerr,y=params,yerr=params_std,markersize=1,**style_data)
    slope = coeffs[0]
    lower_label = r"{:.2f}$ c_0 N \leq $".format(fudge)
    upper_label = r"$\leq \frac{c_0}{" + "{:.2f}".format(fudge) + "} N$"
    label_timing = learner_name(learner_trials)
    style_timing = style_pred
    condition = y_pred > 1e-2
    idx_good  = np.where(condition)[0]
    idx_bad = np.where(~condition)[0]
    x_pred_plot = x_pred[idx_good]
    y_pred_plot = y_pred[idx_good]
    # only plot where the prediction is reasonable
    plt.plot(x_pred_plot,y_pred_plot/fudge,**style_timing)
    plt.plot(x_pred_plot,y_pred_plot*fudge,**style_timing)
    # plot where _not _reasonable_
    style_not_reasonable = dict(**style_timing)
    style_not_reasonable['color']='k'
    style_not_reasonable['alpha']=0.3
    plt.plot(x_pred[idx_bad],y_pred[idx_bad]/fudge,**style_not_reasonable)
    plt.plot(x_pred[idx_bad],y_pred[idx_bad]*fudge,**style_not_reasonable)
    ax = plt.gca()
    ax.set_xscale('log')
    ax.set_yscale('log')
    # plot something just for the legend entry
    plt.plot([],[],label=label_timing.replace(" ","\n"),marker=marker,
             **style_timing)
    PlotUtilities.lazyLabel("N (points per curve)",
                            "Runtime per curve (s)",
                            "Runtime per curve, T(N), is $\Theta(\mathrm{N})$")
开发者ID:prheenan,项目名称:Research,代码行数:57,代码来源:TimePlot.py

示例15: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import lazyLabel [as 别名]
def run():
    """
    Generates FRET histograms from NaCl and KCl data
    """
    data = ReadNaCl("./Data/NaCl")
    dataKcl = ReadKCl("./Data/KCl")
    # assume number of histograms is the same
    NumHists = len(data)
    fig = pPlotUtil.figure(figsize=(12,16))
    CommonStyle = dict(alpha=0.3,linewidth=0)
    StyleDicts = [dict(color='m',label="0mM NaCl",**CommonStyle),
                  dict(color='r',label="1mM NaCl",**CommonStyle),
                  dict(color='k',label="10mM NaCl",**CommonStyle),
                  dict(color='c',label="25mM NaCl",**CommonStyle),
                  dict(color='g',label="50mM NaCl",**CommonStyle),
                  dict(color='b',label="100mM NaCl",**CommonStyle)]
    # for style, just replace label 'NaCl' with 'KCL'
    StyleDictKCL = copy.deepcopy(StyleDicts)
    for i,TmpDict in enumerate(StyleDictKCL):
        TmpDict['label'] = TmpDict['label'].replace("NaCl","KCl")
        TmpDict['alpha'] = 0.7
        TmpDict['linewidth'] = 0.5
    # determine the bounds for the FRET
    MinFret = -0.25
    MaxFretFromData = np.max([max(arr) for arr in data])
    MaxFret = 1.2
    # assume a-priori knowledge of the bin counts
    MinBin = 0
    MaxBin = 140
    StepFret = 0.01
    ylim = [MinBin,MaxBin]
    bins = np.arange(MinFret,MaxFret,StepFret)
    for i,histogram in enumerate(data):
        title = "High salt induces GQ folding" \
                if i == 0 else ""
        # plot the NaCl data
        plt.subplot(NumHists,2,(2*i+1))
        plt.hist(histogram,bins=bins,**StyleDicts[i])
        AxesDefault(ylim,title,"Count",UseYTicks=True)
        plt.subplot(NumHists,2,2*(i+1))
        plt.hist(dataKcl[i],bins=bins,**StyleDictKCL[i])
        AxesDefault(ylim,"","",UseYTicks=False)
        # plot the KCl Data
    plt.subplot(NumHists,2,11)
    ax = plt.gca()
    plt.setp(ax.get_xticklabels(),visible=True)
    plt.setp(ax.get_yticklabels(),visible=True)
    pPlotUtil.lazyLabel("FRET","Count","",frameon=True)
    plt.subplot(NumHists,2,12)
    ax = plt.gca()
    plt.setp(ax.get_xticklabels(),visible=True)
    pPlotUtil.lazyLabel("FRET","","",frameon=True)

    pPlotUtil.savefig(fig,"./out.png")
开发者ID:prheenan,项目名称:Research,代码行数:56,代码来源:MainHistogramAnalysis.py


注:本文中的GeneralUtil.python.PlotUtilities.lazyLabel方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。