当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.no_y_label方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.no_y_label方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.no_y_label方法的具体用法?Python PlotUtilities.no_y_label怎么用?Python PlotUtilities.no_y_label使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.no_y_label方法的8个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: setup_pedagogy_ticks

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def setup_pedagogy_ticks(ax,scale_bar_x,x_heat_kw,y_heat_kw,offset_y=0.9):
    font_kwargs= copy.deepcopy(Scalebar.def_font_kwargs_y)
    # fix the keywords relative to the heatmap
    x_heat_kw['font_kwargs']['color'] = 'k'
    x_heat_kw['line_kwargs']['color'] = 'k'
    y_heat_kw['font_kwargs']['color'] = 'k'
    y_heat_kw['line_kwargs']['color'] = 'k'  
    y_heat_kw['unit'] = 'kcal/mol '
    y_heat_kw['height'] = 40
    Scalebar.crossed_x_and_y_relative(scale_bar_x,offset_y,ax=ax,
                                      x_kwargs=x_heat_kw,
                                      y_kwargs=y_heat_kw)
    PlotUtilities.no_y_label(ax)                                              
开发者ID:prheenan,项目名称:Research,代码行数:15,代码来源:main_landscapes.py

示例2: plot_fec_cartoon

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def plot_fec_cartoon(base,data_base,file_names,arrow_kwargs=dict()):
    kw = dict(cache_directory=data_base,force=False)
    file_paths = [data_base + f +".csv" for f in file_names]
    cases = [read_and_cache_file(f,**kw) for f in file_paths]
    n_cases = len(cases)
    out_names = []
    event_styles = Plotting._fec_event_colors
    styles = [dict(colors=event_styles,use_events=False),
              dict(colors=event_styles),
              dict(colors=event_styles)]
    fudge_pN = [10,12,25]
    im_path = base + "/cartoon/SurfaceChemistry Dig10p3_pmod-0{:d}.png"
    gs= gridspec.GridSpec(2,3)
    for i in range(3):
        plt.subplot(gs[0, i])
        image = plt.imread(im_path.format(i+1))
        plt.imshow(image,interpolation="bilinear",aspect='equal',extent=None)
        ax = plt.gca()
        ax.axis('off')
    for i,c in enumerate(cases):
        plt.subplot(gs[1, i])
        style = styles[i]
        fec_split = Plotting.plot_fec(c,**style)
        plt.xlim([-30,650])
        # decorate the plot to make it easier to read
        plot_x = fec_split.retract.Separation * 1e9
        plot_y = fec_split.retract.Force *1e12
        slices = fec_split.get_retract_event_slices()
        Plotting.top_bars(plot_x,plot_x,slices,colors=style['colors'])
        event_idx = [slice_v.stop for slice_v in slices]
        if (len(event_idx) > 0):
            # remove the last index (just te end of the FEC)
            event_idx = event_idx[:-1]
            fudge =fudge_pN[i]
            Plotting.plot_arrows_above_events(event_idx,plot_x,plot_y,fudge,
                                              **arrow_kwargs)
        not_first_plot = i != 0
        fmt(remove_y_labels=False,remove_x_labels=False)
        if (i == 0):
            y_label = r"Force (pN)"
            x_label = "Separation (nm)"
        else:
            y_label = ""
            x_label = ""
            ax = plt.gca()
            PlotUtilities.no_y_label(ax=ax)
        PlotUtilities.ylabel(y_label)
        PlotUtilities.xlabel(x_label)
        PlotUtilities.tick_axis_number(num_x_major=4)
开发者ID:prheenan,项目名称:Research,代码行数:51,代码来源:main_figure_cartoon.py

示例3: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    n_samples = int(1e4)
    sigma = 1
    loc_arr = [-3,-1,0.5]
    n_bins = 50
    ylim = [0,0.6]
    n_cols = 3+1
    xlim = [-12,12]
    bins = np.linspace(*xlim,endpoint=True,num=n_bins)
    fig = PlotUtilities.figure((12,7))
    plt.subplot(1,n_cols,1)
    bhattacharya,x1,x2 = plot_bhattacharya(sigma,n_samples,bins=bins,
                                           loc=-9)
    plt.xlim(xlim)
    PlotUtilities.tickAxisFont()
    PlotUtilities.xlabel("Distribution Value")
    PlotUtilities.ylabel("Probability")
    PlotUtilities.legend(frameon=False)
    plt.ylim(ylim)
    title = p_label(bhattacharya,x1,x2)
    PlotUtilities.title(title)
    for i,loc in enumerate(loc_arr):
        plt.subplot(1,n_cols,(i+2))
        bhattacharya,x1,x2 = plot_bhattacharya(sigma,n_samples,bins,
                                               loc=loc)
        title = p_label(bhattacharya,x1,x2)
        PlotUtilities.title(title)
        plt.xlim(xlim)
        plt.ylim(ylim)
        PlotUtilities.tickAxisFont()
        PlotUtilities.no_y_label()
        PlotUtilities.legend(frameon=False)
        PlotUtilities.xlabel("")
    PlotUtilities.savefig(fig,"bcc.pdf",subplots_adjust=dict(wspace=0.1))
开发者ID:prheenan,项目名称:Research,代码行数:45,代码来源:main_bhattacharya.py

示例4: plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def plot(interp,split_fec,f,xlim_rel_start,xlim_rel_delta,
         when_to_break=_dont_break):
    # calculate all the things we will neeed
    time_sep_force = f(split_fec)
    x_plot,y_plot = Plotting.plot_format(time_sep_force)
    n_filter_points = 1000
    x_raw = time_sep_force.Time
    y_raw = time_sep_force.Force
    interp_raw = interp(x_raw)
    diff_raw = y_raw - interp_raw
    stdev = Analysis.local_stdev(diff_raw,n=split_fec.tau_num_points)
    xlims_rel = [ [i,i+xlim_rel_delta] for i in  xlim_rel_start]
    # convert to plotting units
    n = x_plot.size
    slices_abs = [ slice(int(i*n),int(f*n),1) for i,f in xlims_rel ]
    x_plot_slices = [ x_plot[s] for s in slices_abs ]
    diff_raw_slices = [diff_raw[s] for s in slices_abs]
    max_raw_diff_slices = [max(d) for d in diff_raw_slices]
    min_raw_diff_slices = [min(d) for d in diff_raw_slices]
    range_raw_diff_slices = np.array([min(min_raw_diff_slices),
                                      max(max_raw_diff_slices)])
    range_raw_diff = np.array([min(diff_raw),max(diff_raw)])
    range_plot_diff = f_plot_y(range_raw_diff*1.1)
    xlim_abs = [ [min(x),max(x)] for x in x_plot_slices]
    n_plots = len(x_plot_slices)
    # set up the plot styling
    style_approach = dict(color='b')
    style_raw = dict(alpha=0.3,**style_approach)
    style_interp = dict(linewidth=3,**style_approach)
    colors = ['r','m','k']
    style_regions = [] 
    for c in colors:
        style_tmp = dict(**style_raw)
        style_tmp['color'] = c
        style_regions.append(style_tmp)
    gs = gridspec.GridSpec(3,2*n_plots)
    plt.subplot(gs[0,:])
    plot_force(x_plot,y_plot,interp_raw,style_raw,style_interp)
    # highlight all the residual regions in their colors
    for style_tmp,slice_tmp in zip(style_regions,slices_abs):
        if (when_to_break == _break_after_interp):
            break
        style_interp_tmp = dict(**style_tmp)
        style_interp_tmp['alpha'] = 1
        plt.plot(x_plot[slice_tmp],y_plot[slice_tmp],**style_tmp)
        plt.plot(x_plot[slice_tmp],f_plot_y(interp_raw[slice_tmp]),linewidth=3,
                 **style_interp_tmp)
        if (when_to_break == _break_after_first_zoom):
            break
    ax_diff = plt.subplot(gs[1,:])
    plot_residual(x_plot,diff_raw,style_raw)
    # highlight all the residual regions in their colors
    for style_tmp,slice_tmp in zip(style_regions,slices_abs):
        if (when_to_break == _break_after_interp):
            break
        plt.plot(x_plot[slice_tmp],f_plot_y(diff_raw)[slice_tmp],**style_tmp)
        if (when_to_break == _break_after_first_zoom):
            break
    plt.ylim(range_plot_diff)
    tick_kwargs = dict(right=False)
    # plot all the subregions
    for i in range(n_plots):
        xlim_tmp = xlim_abs[i]
        ylim_tmp = range_plot_diff
        """
        plot the raw data
        """
        offset_idx = 2*i
        ax_tmp = plt.subplot(gs[-1,offset_idx])
        diff_tmp = diff_raw_slices[i]
        # convert everything to plotting units
        diff_plot_tmp =f_plot_y(diff_tmp) 
        x_plot_tmp = x_plot_slices[i]
        style_tmp = style_regions[i]
        if (when_to_break != _break_after_interp):
            plt.plot(x_plot_tmp,diff_plot_tmp,**style_tmp)
        PlotUtilities.no_x_anything()
        if (i != 0):
            PlotUtilities.no_y_label()
            PlotUtilities.tickAxisFont(**tick_kwargs)
        else:
            PlotUtilities.lazyLabel("","Force (pN)","",tick_kwargs=tick_kwargs)
        plt.xlim(xlim_tmp)
        plt.ylim(ylim_tmp)
        if (when_to_break != _break_after_interp):
            PlotUtilities.zoom_effect01(ax_diff, ax_tmp, *xlim_tmp)
        if (i == 0 and (when_to_break != _break_after_interp)):
            # make a scale bar for this plot
            time = 20e-3
            string = "{:d} ms".format(int(time*1000))
            PlotUtilities.scale_bar_x(np.mean(xlim_tmp),0.8*max(ylim_tmp),
                                      s=string,width=time,fontsize=15)
        """
        plot the histogram
        """
        ax_hist = plt.subplot(gs[-1,offset_idx+1])
        if (i == 0):
            PlotUtilities.xlabel("Count")
        else:
            PlotUtilities.no_x_label()
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_figure_noise.py

示例5: make_metric_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def make_metric_plot(metrics,
                     xlim_dist=[1e-5,2],
                     xlim_load=[1e-2,1e5],
                     xlim_rupture=[-120,320]):
    colors = Plotting.algorithm_colors()
    n_rows = 3
    n_cols = 3
    legend_locs = ['upper right','upper left','upper left']
    titles = ["FEATHER","Fovea","Wavelet"]
    legend_loading = [None,None,None]
    legend_kwargs_style = dict(fontsize=8,handlelength=0.75,handletextpad=0.25)
    for i,m in enumerate(metrics):
        offset = n_rows * i
        # the first column gets the algorithm label; the first row gets the
        # metric label
        kw_tmp = dict(title_kwargs=dict(fontweight='bold',color='b',fontsize=9),
                      legend_kwargs=legend_kwargs_style)
        if offset == 0:
            title_dist = "Location error"
            title_load = r"Loading rate (NuG2 + $\mathbf{\alpha_3}$D)"
            title_rupture_force = r"Rupture force (NuG2 + $\mathbf{\alpha_3}$D)"
        else:
            title_dist,title_load,title_rupture_force = "","",""
        # only have an x label on the last row
        last_row = (offset/n_rows == n_rows-1)
        if (last_row):
            xlabel_dist = "Relative Error ($\mathbf{x_k}$)"
            xlabel_load = "Loading Rate (pN/s)"
            xlabel_rupture_force = \
                PlotUtilities.variable_string("F_R")
        else:
            xlabel_dist, xlabel_load,xlabel_rupture_force = "","",""
        n_string = r"N_{\mathrm{" + "{:s}".format(titles[i]) + "}}"
        ylabel_dist = PlotUtilities.variable_string(n_string)
        color_pred=colors[i]
        color_true = 'g'
        # get the formatting dictionaries for the various plots 
        distance_histogram_kw= \
            Plotting.event_error_kwargs(m,color_pred=color_pred,
                                        label_bool=False)
        true_style_histogram = Plotting.\
            _histogram_true_style(color_true=color_true,label="true")
        pred_style_histogram = Plotting.\
            _histogram_predicted_style(color_pred=color_pred,label="predicted")
        # get the binning for the rupture force and loading rates
        true,pred = m.true,m.pred        
        ruptures_true,loading_true = \
            Learning.get_rupture_in_pN_and_loading_in_pN_per_s(true)
        ruptures_pred,loading_pred = \
            Learning.get_rupture_in_pN_and_loading_in_pN_per_s(pred)
        _lim_force_plot,_bins_rupture_plot,_lim_load_plot,_bins_load_plot = \
            Learning.limits_and_bins_force_and_load(ruptures_pred,ruptures_true,
                                                    loading_true,loading_pred,
                                                    limit=False)            
        # # make the 'just the distance' figures
        ax_dist = plt.subplot(n_rows,n_cols,(offset+1))
        Plotting.histogram_event_distribution(use_q_number=True,
                                              **distance_histogram_kw)
        PlotUtilities.lazyLabel(xlabel_dist,ylabel_dist,title_dist,
                                loc=legend_locs[i],legendBgColor='w',
                                frameon=False,**kw_tmp)
        PlotUtilities.ylabel(ylabel_dist,fontweight='bold')
        plt.xlim(xlim_dist)                                   
        if not last_row:
            PlotUtilities.no_x_label(ax_dist)
        tick_style_log()
        # # make the loading rate histogram      
        ax_load = plt.subplot(n_rows,n_cols,(offset+2))
        Plotting.loading_rate_histogram(pred,bins=_bins_load_plot,
                                        **pred_style_histogram)
        Plotting.loading_rate_histogram(true,bins=_bins_load_plot,
                                        **true_style_histogram)
        plt.xscale('log')
        plt.yscale('log')
        PlotUtilities.lazyLabel(xlabel_load,"",title_load,
                                legendBgColor='w',
                                loc='upper left',frameon=False,**kw_tmp)
        plt.xlim(xlim_load)               
        if not last_row:
            PlotUtilities.no_x_label(ax_load)
        # get the locations
        if legend_loading[i] is not None:
            PlotUtilities.legend(loc=(legend_loading[i]),**legend_kwargs_style)
        PlotUtilities.no_y_label(ax_load)
        tick_style_log()
        # # make the rupture force histogram
        ax_rupture = plt.subplot(n_rows,n_cols,(offset+3))
        Plotting.rupture_force_histogram(pred,bins=_bins_rupture_plot,
                                        **pred_style_histogram)
        Plotting.rupture_force_histogram(true,bins=_bins_rupture_plot,
                                        **true_style_histogram)
        PlotUtilities.lazyLabel(xlabel_rupture_force,"",title_rupture_force,
                                useLegend=False,**kw_tmp)       
        plt.xlim(xlim_rupture)                                                 
        plt.yscale('log')
        if not last_row:
            PlotUtilities.no_x_label(ax_rupture)     
        PlotUtilities.no_y_label(ax_rupture)                
        tick_style_log(change_x=False)           
        # set all the y limits for this row
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_performance_figure.py

示例6: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]

#.........这里部分代码省略.........
    ax_final_prob = plt.subplot(gs[3,:])
    plt.plot(time_plot,to_prob_plot(info_final.cdf),
             **probability_kwargs)    
    title_consistent = (arrow + "Supress small force change events")
    PlotUtilities.lazyLabel("",probability_label_post,title_consistent,**kw)
    PlotUtilities.no_x_label(ax_final_prob)      
    plt.ylim(ylim_prob)    
    plt.xlim(xlim_time)
    Scalebar.x_scale_bar_and_ticks_relative(ax=ax_final_prob,**prob_scale_dict)
    tick_style()
    # # plot the final event locations
    ax_final = plt.subplot(gs[4,:])
    plt.plot(time_plot,force_plot,**raw_force_kwargs)    
    plt.plot(time_plot,force_interp_plot,**interp_force_kwargs)
    PlotUtilities.no_x_label(ax_final)      
    title_final = (arrow + " Extract significant events")
    event_starts = [e.start for e in info_final.event_slices_raw]
    Plotting.plot_arrows_above_events(event_starts,plot_x=time_plot,
                                      plot_y=force_plot,fudge_y=40,
                                      label=None)
    PlotUtilities.lazyLabel("",force_label,title_final,
                            loc = "upper center",**kw)
    plt.ylim(ylim_force_pN)                           
    plt.xlim(xlim_time)
    Scalebar.x_scale_bar_and_ticks_relative(ax=ax_final,**fec_scale_dict)
    tick_style()
    ylim_first_event = [-5,30]
    first_event_window_large = 0.045
    fraction_increase= 5
    color_first = 'm'
    # get the event index, window pct to use, where to show a 'zoom', and the
    # y limits (if none, just all of it)
    event_idx_fudge_and_kw = \
        [ [0 ,first_event_window_large   ,True,ylim_first_event,color_first],
          [0 ,first_event_window_large/fraction_increase,False,
           ylim_first_event,color_first],
          [-1,4e-3,True,[-50,None],'r']]
    widths_seconds = 1e-3 * np.array([50,10,5])
    for i,(event_id,fudge,zoom_bool,ylim,c) in \
        enumerate(event_idx_fudge_and_kw):
        # get how the interpolated plot should be 
        interp_force_kwargs_tmp = dict(**interp_force_kwargs)
        interp_force_kwargs_tmp['color'] = c
        interp_force_kwargs_tmp['linewidth'] = 1.25
        # determine the slice we want to use       
        event_location = info_final.event_idx[event_id]
        event_bounding_slice = slice_window_around(event_location,
                                                   time_plot,fraction=fudge)
        time_first_event_plot = time_plot[event_bounding_slice]
        time_slice = time_first_event_plot
        # # plot the interpolated on the *full plot* before we zoom in (so the
        # # colors match)
        plt.subplot(gs[-2,:])
        plt.plot(time_slice,force_interp_plot[event_bounding_slice],
                 **interp_force_kwargs_tmp)       
        plt.ylim(ylim_force_pN)
        # # next, plot the zoomed version
        in_ax = plt.subplot(gs[-1,i])
        in_ax.plot(time_slice,force_plot[event_bounding_slice],
                   **raw_force_kwargs)
        in_ax.plot(time_slice,force_interp_plot[event_bounding_slice],
                   **interp_force_kwargs_tmp)       
        PlotUtilities.no_x_anything(ax=in_ax)
        # removing  y label on all of them..
        if (i == 0):
            ylabel = force_label
        else:
            ylabel = ""
        # determine if we need to add in 'guidelines' for zooming
        if (zoom_bool):
            PlotUtilities.zoom_effect01(ax_final,in_ax,*in_ax.get_xlim(),
                                        color=c)
            PlotUtilities.lazyLabel("Time (s)",ylabel,"",**kw)
        else:
            # this is a 'second' zoom in...'
            PlotUtilities.no_y_label(in_ax)
            ylabel = ("{:d}x\n".format(fraction_increase)) + \
                      r"$\rightarrow$"
            PlotUtilities.lazyLabel("Time (s)",ylabel,"",**kw)
            PlotUtilities.ylabel(ylabel,rotation=0,labelpad=5)
        # plot an arrow over the (single) event
        Plotting.plot_arrows_above_events([event_location],plot_x=time_plot,
                                          plot_y=force_plot,fudge_y=7,
                                          label=None,markersize=150)
        plt.ylim(ylim)
        common = dict(unit="ms",
                      unit_kwargs=dict(value_function = lambda x: x*1e3))
        width = widths_seconds[i]
        Scalebar.x_scale_bar_and_ticks_relative(offset_y=0.1,offset_x=0.5,
                                                width=width,ax=in_ax,
                                                **common)
        PlotUtilities.tom_ticks(ax=in_ax,num_major=2,change_x=False)
    loc_major = [-0.15,1.2]
    loc_minor = [-0.15,1.15]
    locs = [loc_major for _ in range(5)] + \
           [loc_minor for _ in range(3)]
    PlotUtilities.label_tom(fig,loc=locs)
    subplots_adjust=dict(hspace=0.48,wspace=0.35)
    PlotUtilities.save_png_and_svg(fig,"flowchart",
                                   subplots_adjust=subplots_adjust)
开发者ID:prheenan,项目名称:Research,代码行数:104,代码来源:main_flowchart.py

示例7: make_pedagogical_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def make_pedagogical_plot(data_to_plot,kw,out_name="./iwt_diagram"):
    heatmap_data = data_to_plot.heatmap_data
    data = landscape_data(data_to_plot.landscape)
    fig = PlotUtilities.figure((3.25,5))
    # # ploy the heat map 
    ax_heat = plt.subplot(3,1,1)
    heatmap_plot(heatmap_data,data.amino_acids_per_nm(),
                 kw_heatmap=kw['kw_heatmap'])
    xlim_fec = plt.xlim()
    PlotUtilities.no_x_label(ax_heat)    
    ax_heat.set_ylim([0,150])
    PlotUtilities.no_x_label(ax_heat)
    PlotUtilities.no_y_label(ax_heat)   
    fontsize_scalebar = 6 
    common_kw = dict(color='w',fontsize=fontsize_scalebar)
    x_font,y_font = Scalebar.\
        font_kwargs_modified(x_kwargs=common_kw,
                             y_kwargs=common_kw)
    heat_kw_common = dict(line_kwargs=dict(color='w',linewidth=1.5))
    x_heat_kw = dict(width=15,unit="nm",font_kwargs=x_font,**heat_kw_common)
    y_heat_kw = dict(height=30,unit='pN ',font_kwargs=y_font,**heat_kw_common)
    # add a scale bar for the heatmap...
    scale_bar_x = 0.83
    Scalebar.crossed_x_and_y_relative(scale_bar_x,0.55,ax=ax_heat,
                                      x_kwargs=x_heat_kw,
                                      y_kwargs=y_heat_kw)
    jcp_fig_util.add_helical_boxes(ax=ax_heat,ymax_box=0.9,alpha=1.0,
                                   font_color='w',offset_bool=True)
    # # plot the energy landscape...
    ax_correction = plt.subplot(3,1,2)    
    plot_with_corrections(data)
    PlotUtilities.no_x_label(ax_correction)
    PlotUtilities.lazyLabel("","Energy (kcal/mol)","")
    ax_correction.set_xlim(xlim_fec)            
    offset_y_pedagogy = 0.42
    setup_pedagogy_ticks(ax_correction,scale_bar_x,x_heat_kw,y_heat_kw,
                         offset_y=offset_y_pedagogy)
    legend_font_size = 9                         
    legend = PlotUtilities.legend(handlelength=1.5,loc=(0.15,0.07),ncol=3,
                                  fontsize=legend_font_size,handletextpad=0.4)
    for i,text in enumerate(legend.get_texts()):
        plt.setp(text, color = kwargs_correction()[i]['color'])    
    # make the inset plot 
    axins = zoomed_inset_axes(ax_correction, zoom=3, loc=2,
                              borderpad=0.8) 
    plot_with_corrections(data)
    xlim_box = [1,5]
    ylim_box = [-3,28]
    plt.xlim(xlim_box)
    plt.ylim(ylim_box)
    PlotUtilities.no_x_anything(axins)
    PlotUtilities.no_y_anything(axins)
    # add in scale bars
    kw_common = dict(line_kwargs=dict(linewidth=0.75,color='k'))
    common_font_inset = dict(fontsize=fontsize_scalebar)
    x_kwargs = dict(verticalalignment='top',**common_font_inset)
    x_font,y_font = Scalebar.\
        font_kwargs_modified(x_kwargs=x_kwargs,
                             y_kwargs=dict(horizontalalignment='right',
                                           **common_font_inset))
    # set up the font, offset ('fudge') the text from the lines                              
    fudge_x = dict(x=0,y=-0.5)
    fudge_y = dict(x=0,y=0.1)
    Scalebar.crossed_x_and_y_relative(0.55,0.66,ax=axins,
                                      x_kwargs=dict(width=2,unit="nm",
                                                    font_kwargs=x_font,
                                                    fudge_text_pct=fudge_x,
                                                    **kw_common),
                                      y_kwargs=dict(height=8,unit='kcal/\nmol',
                                                    font_kwargs=y_font,
                                                    fudge_text_pct=fudge_y,                                                    
                                                    **kw_common))
    # draw a bbox of the region of the inset axes in the parent axes and
    # connecting lines between the bbox and the inset axes area
    color_box = 'rebeccapurple'           
    PlotUtilities.color_frame('rebeccapurple',ax=axins) 
    Annotations.add_rectangle(ax_correction,xlim_box,ylim_box,edgecolor=color_box)
    ax_correction.set_xlim(xlim_fec)
    ax_energy = plt.subplot(3,1,3)    
    plot_landscape(data,xlim_fec,kw_landscape=kw['kw_landscape'],
                   plot_derivative=False,label_deltaG=" ")
    ax_energy.set_xlim(xlim_fec)                         
    setup_pedagogy_ticks(ax_energy,scale_bar_x,x_heat_kw,y_heat_kw,
                         offset_y=offset_y_pedagogy)
    # add in the equation notation
    strings,colors = [],[]
    labels = kwargs_labels()
    # add in the appropriate symbols 
    strings = ["$\Delta G$ = ",labels[0]," + ",labels[1]," - ",labels[2]]
    colors_labels = [c['color'] for c in kwargs_correction()]
    colors = ["k"] + [item for list in [[c,"k"] for c in colors_labels]
                      for item in list]
    x,y = Scalebar.x_and_y_to_abs(x_rel=0.08,y_rel=0.85,ax=ax_energy)        
    Annotations.rainbow_text(x,y,strings=strings,colors=colors,
                             ax=ax_energy,size=legend_font_size)
    PlotUtilities.legend(handlelength=0.5,loc=(0.03,0.8))                             
    PlotUtilities.no_x_label(ax_energy)                         
    PlotUtilities.save_png_and_svg(fig,out_name)  
开发者ID:prheenan,项目名称:Research,代码行数:100,代码来源:main_landscapes.py

示例8: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import no_y_label [as 别名]
def run():
    """
    <Description>q

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    in_dir = None
    flickering_dir = "../Data/fec/"
    # XXX use the flickering dir for stuff
    cache_dir = flickering_dir 
    GenUtilities.ensureDirExists(flickering_dir)
    force_read_data = False
    raw_data = IoUtilHao.read_and_cache_data_hao(flickering_dir,
                                                force=force_read_data,
                                                 cache_directory=flickering_dir,
                                                 limit=3)
    example = raw_data[0]                                                 
    example_plot = copy.deepcopy(example)
    # fix the manual offset
    example_plot.LowResData.force -= 7.1
    plot_examples = [example_plot]
    vel_m_per_s = example_plot.Velocity
    x_func = lambda y: y.Separation
    y_func = lambda y: y.Force 
    ylim_pN = [-20,155]
    xlim_nm = [5,75]
    zoom_regions_nm = [ [61.5,63.6]]
    adhesion_max_nm = 19
    region_labels = ["ED Helix","CB Helix","A Helix"]
    region_colors = jcp_fig_util.regions_and_colors()
    regions_nm = [[x,l,c] for l,(x,c) in zip(region_labels,region_colors)]
    colors_regions = [regions_nm[-1]]                        
    # slice the regions 
    regions = [FEC_Util.slice_by_separation(example_plot,*reg) 
               for reg in zoom_regions_nm]
    ylim_pN_zoom = [50,120]
    # # make the plot 
    fig = PlotUtilities.figure((7,4))
    # create the 'top' gridspec
    top_spec = gridspec.GridSpec(2,3)
    # create separate axes for the image and FECs 
    image_spec = \
        gridspec.GridSpecFromSubplotSpec(1,1,subplot_spec=top_spec[0,0])
    data_spec = \
        gridspec.GridSpecFromSubplotSpec(1,2,subplot_spec=top_spec[0,1:])
    # # plot the image 
    ax = plt.subplot(image_spec[:])
    plt.imshow(plt.imread("../Data/sample_cartoon.png"),aspect='auto')
    ax.axis('off')
    # # plot the example fec and zoomed regions
    #
    # 'full' example 
    ax_example = plt.subplot(data_spec[:,0])
    alpha_data = 0.4
    color_data = 'g'
    dict_plot = dict(n_filter_points=2000,
                     style_data=dict(color=color_data,alpha=alpha_data,
                                     linewidth=0.5,linestyle='-'))
    x_full_plot = x_func(example_plot)                                     
    FEC_Plot._fec_base_plot(x_full_plot,y_func(example_plot),
                            **dict_plot)
    PlotUtilities.tom_ticks(ax=ax_example,num_major=5,change_x=False)    
    PlotUtilities.tom_ticks(ax=ax_example,num_major=4,change_y=False)                              
    for i,(r,color) in enumerate(zip(regions,colors_regions)):
        # put a box around the region 
        x,y = x_func(r),y_func(r)
        Annotations.add_rectangle(ax_example,[min(x),max(x)],[min(y),max(y)])
    plt.ylim(ylim_pN)
    plt.xlim(xlim_nm)
    jcp_fig_util.add_helical_boxes(ax=ax_example)
    # plot the adhesion regions
    plt.axvspan(min(x_full_plot),adhesion_max_nm,color='0.85',
                linewidth=0)
    PlotUtilities.lazyLabel("Extension","Force","")   
    PlotUtilities.x_label_on_top(ax_example)
    PlotUtilities.no_x_label(ax_example)
    PlotUtilities.no_y_label(ax_example)
    x_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),width=15,unit="nm")
    y_kwargs = dict(unit_kwargs=dict(fmt="{:.0f}"),
                    height=40,unit="pN")
    Scalebar.crossed_x_and_y_relative(offset_x=0.55,offset_y=0.58,
                                      x_kwargs=x_kwargs,
                                      y_kwargs=y_kwargs,
                                      ax=ax_example)    
    # add in the velocity annotation (in nm/s, from m/s)
    velocity_annotate(ax=ax_example,v=vel_m_per_s*1e9)
    # # plot all the zoomed regions 
    offsets_x = [0.8]
    offsets_y = [0.67]
    heights_pN = [10]
    widths_s = [0.001]
    for i,(r,color) in enumerate(zip(regions,colors_regions)):
        ax_tmp = plt.subplot(data_spec[-1])
        dict_tmp = dict(**dict_plot)
        dict_tmp['style_data']['color'] = color[-1]
        time = r.Time
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_diagram.py


注:本文中的GeneralUtil.python.PlotUtilities.no_y_label方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。