本文整理汇总了Python中GeneralUtil.python.PlotUtilities.savefig方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.savefig方法的具体用法?Python PlotUtilities.savefig怎么用?Python PlotUtilities.savefig使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeneralUtil.python.PlotUtilities
的用法示例。
在下文中一共展示了PlotUtilities.savefig方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
network = FEC_Util.default_data_root()
base = network + "4Patrick/CuratedData/Lipids/DOPC/"+\
"NegativeControls/Representative_Gallery/"
_,raw_data = FEC_Util.read_and_cache_pxp(base,force=False)
processed = [FEC_Util.SplitAndProcess(r) for r in raw_data]
inches_per_plot = 4.5
n_rows,n_cols = FEC_Plot._n_rows_and_cols(processed)
fig_size = (n_cols*inches_per_plot,n_rows*inches_per_plot)
fig = PlotUtilities.figure(figsize=(fig_size))
ylim_pN = [-20,75]
xlim_nm = [-10,100]
FEC_Plot.gallery_fec(processed,xlim_nm,ylim_pN)
plt.suptitle("Negative Control Gallery",y=1.2,fontsize=25)
PlotUtilities.savefig(fig,base + "out.png",close=False)
PlotUtilities.savefig(fig,"./out.png")
示例2: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
BaseDir = "/Volumes/group/4Patrick/Reports/" + \
"2016_6_5_NearEquilibrium_Biotin_DOPC/IWT/"
InBase = BaseDir + "In/"
OutBase = BaseDir + "Out/"
FullNames = [
InBase +"2016-6-3-micah-1-part-per-million-biolevel-long-strept-coated.pxp",
InBase +"2016-6-4-micah-1ppm-biolever-long-strept-saved-data.pxp",
InBase +"2016-6-5-micah-1ppm-biolever-long-strept-saved-data.pxp"
]
Limit = 100
ForceReRead = False
ForceRePlot = False
IwtObjects,RetractList,Touchoff,LandscapeObj = \
CheckpointUtilities.getCheckpoint(OutBase + "IWT.pkl",
IWT_Util.GetObjectsAndIWT,
ForceReRead,InBase,FullNames,
ForceReRead,
Limit=Limit)
ext,force = CheckpointUtilities.\
getCheckpoint(OutBase + "ExtAndForce.pkl",
IWT_Util.GetAllExtensionsAndForceAndPlot,
ForceRePlot,RetractList,
Touchoff,IwtObjects,OutBase)
fig = PlotUtilities.figure(figsize=(8,12))
IWT_Util.ForceExtensionHistograms(force,ext)
PlotUtilities.savefig(fig,OutBase + "HeatMap.png")
fig = PlotUtilities.figure(figsize=(8,12))
IWT_Util.EnergyLandscapePlot(LandscapeObj)
PlotUtilities.savefig(fig,OutBase + "IWT.png")
示例3: sequence_plots
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def sequence_plots(out_base,*args,**kwargs):
break_points = [_break_after_interp,_break_after_first_zoom,_dont_break]
for i,break_point in enumerate(break_points):
fig = PlotUtilities.figure((8,9))
plot(*args,when_to_break=break_point,**kwargs)
PlotUtilities.savefig(fig,out_base + "{:d}.pdf".format(i),
subplots_adjust=dict(wspace=0.05))
示例4: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run(base="./"):
"""
"""
out_base = base
data_base = base + "data/"
data_file = "../FigurePerformance_CS/data/Scores.pkl"
force=False
cache_file = base + "cache.pkl"
fec_file = data_base + "multiple.csv.pkl"
name = "FEATHER"
final_out_hist = "{:s}{:s}_distances.pdf".format(out_base,
name.replace(" ","_"))
l = CheckpointUtilities.getCheckpoint(cache_file,get_feather_run,force,
data_file)
# make the distance histogram figure for the presenation
fig = PlotUtilities.figure((10,5))
make_distance_figure(l,data_file,fec_file)
PlotUtilities.legend(loc='upper right')
PlotUtilities.savefig(fig,final_out_hist.replace(".pdf","_pres.pdf"))
# make the distance histogram figure
fig = PlotUtilities.figure((16,6))
make_distance_figure(l,data_file,fec_file)
PlotUtilities.legend(loc='upper right')
PlotUtilities.label_tom(fig,loc=(-0.1,1.0),fontsize=18)
PlotUtilities.savefig(fig,final_out_hist)
示例5: ScatterPlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def ScatterPlot(TransitionForces,ListOfSepAndFits,ExpectedContourLength,
OutDir):
"""
Makes a scatter plot of the contour length and transition forces
Args:
TransitionForces: array, each element the transition region for curve i
ListOfSepAndFits: array, each element the output of GetWLCFits
ExpectedContourLength: how long we expect the construct to be
OutDir: base directory, for saving stuff
"""
L0Arr = []
TxArr = []
for (SepNear,FitObj),TransitionFoces in zip(ListOfSepAndFits,
TransitionForces):
MedianTx = np.median(TransitionFoces)
L0,Lp,_,_ = FitObj.Params()
L0Arr.append(L0)
TxArr.append(MedianTx)
# go ahead an throw out ridiculous data from the WLC, where transition
# normalize the contour length to L0
L0Arr = np.array(L0Arr)/ExpectedContourLength
# convert to useful units
L0Plot = np.array(L0Arr)
TxPlot = np.array(TxArr) * 1e12
fig = pPlotUtil.figure(figsize=(12,12))
plt.subplot(2,2,1)
plt.plot(L0Plot,TxPlot,'go',label="Data")
alpha = 0.3
ColorForce = 'r'
ColorLength = 'b'
plt.axhspan(62,68,color=ColorForce,label=r"$F_{\rm tx}$ $\pm$ 5%",
alpha=alpha)
L0BoxMin = 0.9
L0BoxMax = 1.1
plt.axvspan(L0BoxMin,L0BoxMax,color=ColorLength,
label=r"L$_{\rm 0}$ $\pm$ 10%",alpha=alpha)
fudge = 1.05
# make the plot boundaries OK
MaxX = max(L0BoxMax,max(L0Plot))*fudge
MaxY = 90
plt.xlim([0,MaxX])
plt.ylim([0,MaxY])
pPlotUtil.lazyLabel("",r"F$_{\rm overstretch}$ (pN)",
"DNA Characterization Histograms ",frameon=True)
## now make 1-D histograms of everything
# subplot of histogram of transition force
HistOpts = dict(alpha=alpha,linewidth=0)
plt.subplot(2,2,2)
TransitionForceBins = np.linspace(0,MaxY)
plt.hist(TxPlot,bins=TransitionForceBins,orientation="horizontal",
color=ColorForce,**HistOpts)
pPlotUtil.lazyLabel("Count","","")
plt.ylim([0,MaxY])
plt.subplot(2,2,3)
ContourBins = np.linspace(0,MaxX)
plt.hist(L0Plot,bins=ContourBins,color=ColorLength,**HistOpts)
pPlotUtil.lazyLabel(r"$\frac{L_{\rm WLC}}{L_0}$","Count","")
plt.xlim([0,MaxX])
pPlotUtil.savefig(fig,"{:s}Out/ScatterL0vsFTx.png".format(OutDir))
示例6: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run(base="./"):
"""
"""
name = "cartoon.pdf"
data_base = base + "data/"
file_names = ["no","single","multiple"]
# save without the labels for the presentation
subplots_adjust = dict(left=0.12,wspace=0.2,hspace=0.1)
fig = PlotUtilities.figure((8,4))
plot_fec_cartoon(base,data_base,file_names,
arrow_kwargs=dict(markersize=75))
PlotUtilities.savefig(fig,name.replace(".pdf","_pres.pdf"),
subplots_adjust=subplots_adjust)
# save with the labels for the presentation
fig = PlotUtilities.figure((16,8))
subplots_adjust = dict(left=0.08,wspace=0.2,hspace=0.1)
plot_fec_cartoon(base,data_base,file_names,
arrow_kwargs=dict(markersize=125))
n_subplots = 2
n_categories = len(file_names)
letters = string.uppercase[:n_categories]
letters = ([r"{:s}".format(s) for s in letters] + \
["" for _ in range(n_categories)])
bottom = (-0.25,1)
top = (-0.60,1)
loc = [top for i in range(n_categories)] + \
[bottom for i in range(n_categories)]
PlotUtilities.label_tom(fig,letters,loc=loc)
PlotUtilities.savefig(fig,name,subplots_adjust=subplots_adjust)
示例7: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
file_name = "defl.ibw"
defl_volts_wave = PxpLoader.read_ibw_as_wave(file_name)
defl_volts = defl_volts_wave.DataY
invols_nm_per_volt = 154.8
spring_pN_per_nM = 5.70
force_pN = defl_volts * invols_nm_per_volt * spring_pN_per_nM
# zero out to the maximum
force_pN -= np.mean(force_pN)
data_interval_in_s = 1/500e3
rate = 1/float(data_interval_in_s) # data rate in Hz
taus = np.logspace(-5,2,num=50,base=10) # tau-values in seconds
# fractional frequency data
(taus_used, adev, adeverror, adev_n) = \
allantools.adev(force_pN, data_type='freq', rate=rate, taus=taus)
fig = PlotUtilities.figure()
plt.errorbar(x=taus_used,y=adev,yerr=2*adeverror,label="95% C.I.")
plt.xscale('log')
plt.yscale('log')
plt.axhline(1,color='r',linestyle='--',label="1 pN")
PlotUtilities.lazyLabel("Averaging time (s)","Force (pN)","")
PlotUtilities.savefig(fig,"out.png")
示例8: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
in_dir = "./data/"
cache_dir = "./cache/"
out_dir = in_dir
GenUtilities.ensureDirExists(out_dir)
images = ImageUtil.cache_images_in_directory(pxp_dir=in_dir,
cache_dir=cache_dir)
# note: vmin/vmax are in nm (as is height)
vmin_nm = 0
vmax_nm = vmin_nm + 0.6
imshow_kwargs = dict(vmin=vmin_nm,vmax=vmax_nm,cmap = plt.cm.Greys_r)
for im in images:
src_file = im.SourceFilename()
# path to save the image out
full_out_path = "{:s}{:s}-{:s}.png".format(out_dir,src_file,im.Name())
fig = PlotUtilities.figure((3.5,4))
ax = plt.subplot(1,1,1)
im.height = ImageUtil.subtract_background(im,deg=3)
im = ImageUtil.make_image_plot(im,imshow_kwargs,pct=50)
ImageUtil.smart_colorbar(im=im,ax=ax,fig=fig)
PlotUtilities.savefig(fig,full_out_path,bbox_inches='tight')
示例9: InTheWeedsPlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def InTheWeedsPlot(OutBase,UnfoldObj,RefoldObj=[],Example=None,
Bins=[50,75,100,150,200,500,1000],**kwargs):
"""
Plots a detailed energy landscape, and saves
Args:
OutBase: where to start the save
UnfoldObj: unfolding objects
RefoldObj: refolding objects
Bins: how many bins to use in the energy landscape plots
<min/max>_landscape_kT: bounds on the landscape
Returns:
nothing
"""
# get the IWT
kT = 4.1e-21
for b in Bins:
LandscapeObj = InverseWeierstrass.\
FreeEnergyAtZeroForce(UnfoldObj,NumBins=b,RefoldingObjs=RefoldObj)
# make a 2-D histogram of everything
if (Example is not None):
fig = PlotUtilities.figure(figsize=(8,8))
ext_nm = Example.Separation*1e9
IWT_Util.ForceExtensionHistograms(ext_nm,
Example.Force*1e12,
AddAverage=False,
nBins=b)
PlotUtilities.savefig(fig,OutBase + "0_{:d}hist.pdf".format(b))
# get the distance to the transition state etc
print("DeltaG_Dagger is {:.1f}kT".format(Obj.DeltaGDagger))
fig = PlotUtilities.figure(figsize=(12,12))
plot_single_landscape(LandscapeObj,add_meta_half=True,
add_meta_free=True,**kwargs)
PlotUtilities.savefig(fig,OutBase + "1_{:d}IWT.pdf".format(b))
示例10: SavePlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def SavePlot(SortByZ,FullName,SaveName):
Objs = FEC_Util.ReadInData(FullName)
Tmp = Objs[0]
if (SortByZ):
ArgSort = np.argsort(Tmp.Zsnsr)
Tmp.Zsnsr = Tmp.Zsnsr[ArgSort]
Tmp.Force = Tmp.Force[ArgSort]
Offset = 150
else:
Offset = 0
# set up the y limits in pN
ylim = [Offset-20,Offset+25]
fig = pPlotUtil.figure()
plt.subplot(2,1,1)
FullPlot(Tmp)
pPlotUtil.lazyLabel("Stage position (nm)","Force (pN)","Flickering for FEC",
frameon=True)
# x limits for 'zoomed in'
plt.xlim([30,40])
plt.ylim(ylim)
plt.subplot(2,1,2)
FullPlot(Tmp)
pPlotUtil.lazyLabel("Stage position (nm)","Force (pN)","",frameon=True)
# x limits for 'zoomed in'
plt.xlim([36,36.5])
plt.ylim(ylim)
pPlotUtil.savefig(fig,SaveName)
示例11: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
simple script to compare wavelet transform and fft on something that
looks like our data
"""
fig = PlotUtilities.figure(figsize=(10,16))
MakeFigure()
PlotUtilities.savefig(fig,"out.png")
示例12: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
Describes why we are picking the fluorophores we are
"""
# get the excitation filter
filter_file = "lumencor_631_28_nm.txt"
arr = np.loadtxt(filter_file,skiprows=1)
wavelength,filter_value = arr[:,0],arr[:,1]
# convert from 0 to 1 transmission (from 0 to 100)
filter_value /= 100
# get the fluorophore
# (see: http://www.fluorophores.tugraz.at/substance/418)
fluorophore_file = "atto_5382.csv"
arr = np.loadtxt(fluorophore_file,skiprows=1,delimiter=";",
usecols=(0,1,2,3))
wavelength_fluorophore_excitation_nm,excitation = arr[:,0],arr[:,1]
wavelength_fluorophore_emission_nm,emission = arr[:,2],arr[:,3]
# get the emission filter
# see: laser2000.co.uk/semrock_filter.php?code=FF01-680/42-25
emission_filter_file = "FF01-680_42.txt"
arr_emit = np.loadtxt(emission_filter_file,skiprows=4)
wavelength_emission_filter,emission_filter = arr_emit[:,0],arr_emit[:,1]
# plot the fluorophores
label_excite_emit = "\n({:s})".format(fluorophore_file)
wavelength_limits_nm = [500,800]
fig = PlotUtilities.figure((5,6))
plt.subplot(2,1,1)
plt.plot(wavelength,filter_value,
label=("Filter (excitation)\n" + filter_file))
plt.plot(wavelength_fluorophore_excitation_nm,excitation,
label="Fluorophore Excitation" + label_excite_emit,
linestyle='--')
PlotUtilities.lazyLabel("","Excitation efficiency","")
plt.xlim(wavelength_limits_nm)
PlotUtilities.no_x_label()
plt.subplot(2,1,2)
plt.plot(wavelength_emission_filter,emission_filter,
label="Filter (emission) \n" + emission_filter_file)
plt.plot(wavelength_fluorophore_emission_nm,emission,
label="Flurophore Emission" + label_excite_emit,
linestyle='--')
plt.xlim(wavelength_limits_nm)
PlotUtilities.lazyLabel("Wavelength (nm)","Emission efficiency","")
PlotUtilities.savefig(fig,"./filter_comparisons.png")
p1607F,_ = CommonPrimerUtil.Get1607FAnd3520R("../..")
# add a dbco and a fluorophore...
seq_full = [IdtUtil.Dbco5Prime()] + [s for s in p1607F] + \
[IdtUtil.atto_633()]
# get the IDT order
opts = dict(Scale=IdtUtil.Scales._100NM,
Purification=IdtUtil.Purifications.HPLC)
order = IdtUtil.\
SequencesAndNamesTuplesToOrder( [(seq_full,"AzideTestFluorophore")],
**opts)
IdtUtil.PrintAndSave(order,"./test_azide_fluorophore.txt")
示例13: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
Base = "./"
OutBase = Base + "out/"
InFiles = [Base + "PatrickIsGreedy.pxp"]
RawData = IWT_Util.\
ReadInAllFiles(InFiles,Limit=50,
ValidFunc=PxpLoader.valid_fec_allow_endings)
# get the start/ends of the re-folding and unfolding portions
# hard coded constant for now...
# XXX for re-folding, need to add in schedule
# XXX ensure properly zeroed?
idx_end_of_unfolding = int(16100/2)
IwtData,IwtData_fold = split(RawData,idx_end_of_unfolding)
# get the titled landscape...
all_landscape = [-np.inf,np.inf]
Bounds = IWT_Util.BoundsObj(bounds_folded_nm= all_landscape,
bounds_transition_nm= all_landscape,
bounds_unfolded_nm=all_landscape,
force_one_half_N=15e-12)
OutBase = "./out/"
# get the unfolding histograms
forces_unfold = np.concatenate([r.Force for r in IwtData])
separations_unfold = np.concatenate([r.Extension for r in IwtData])
# get the folding histograms..
forces_fold = np.concatenate([r.Force for r in IwtData_fold])
separations_fold = np.concatenate([r.Extension for r in IwtData_fold])
# zero everything...
n_bins = 80
fig = PlotUtilities.figure(figsize=(12,16))
kwargs_histogram = dict(AddAverage=False,nBins=n_bins)
plt.subplot(2,1,1)
IWT_Util.ForceExtensionHistograms(separations_unfold*1e9,
forces_unfold*1e12,**kwargs_histogram)
PlotUtilities.xlabel("")
PlotUtilities.title("*Unfolding* 2-D histogram")
plt.subplot(2,1,2)
IWT_Util.ForceExtensionHistograms(separations_fold*1e9,
forces_fold*1e12,**kwargs_histogram)
PlotUtilities.title("*Folding* 2-D histogram")
PlotUtilities.savefig(fig,OutBase + "0_{:d}hist.pdf".format(n_bins))
IWT_Plot.InTheWeedsPlot(OutBase=OutBase,
UnfoldObj=IwtData,
bounds=Bounds,Bins=[40,60,80,120,200],
max_landscape_kT=None,
min_landscape_kT=None)
示例14: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def run():
"""
Generates FRET histograms from NaCl and KCl data
"""
data = ReadNaCl("./Data/NaCl")
dataKcl = ReadKCl("./Data/KCl")
# assume number of histograms is the same
NumHists = len(data)
fig = pPlotUtil.figure(figsize=(12,16))
CommonStyle = dict(alpha=0.3,linewidth=0)
StyleDicts = [dict(color='m',label="0mM NaCl",**CommonStyle),
dict(color='r',label="1mM NaCl",**CommonStyle),
dict(color='k',label="10mM NaCl",**CommonStyle),
dict(color='c',label="25mM NaCl",**CommonStyle),
dict(color='g',label="50mM NaCl",**CommonStyle),
dict(color='b',label="100mM NaCl",**CommonStyle)]
# for style, just replace label 'NaCl' with 'KCL'
StyleDictKCL = copy.deepcopy(StyleDicts)
for i,TmpDict in enumerate(StyleDictKCL):
TmpDict['label'] = TmpDict['label'].replace("NaCl","KCl")
TmpDict['alpha'] = 0.7
TmpDict['linewidth'] = 0.5
# determine the bounds for the FRET
MinFret = -0.25
MaxFretFromData = np.max([max(arr) for arr in data])
MaxFret = 1.2
# assume a-priori knowledge of the bin counts
MinBin = 0
MaxBin = 140
StepFret = 0.01
ylim = [MinBin,MaxBin]
bins = np.arange(MinFret,MaxFret,StepFret)
for i,histogram in enumerate(data):
title = "High salt induces GQ folding" \
if i == 0 else ""
# plot the NaCl data
plt.subplot(NumHists,2,(2*i+1))
plt.hist(histogram,bins=bins,**StyleDicts[i])
AxesDefault(ylim,title,"Count",UseYTicks=True)
plt.subplot(NumHists,2,2*(i+1))
plt.hist(dataKcl[i],bins=bins,**StyleDictKCL[i])
AxesDefault(ylim,"","",UseYTicks=False)
# plot the KCl Data
plt.subplot(NumHists,2,11)
ax = plt.gca()
plt.setp(ax.get_xticklabels(),visible=True)
plt.setp(ax.get_yticklabels(),visible=True)
pPlotUtil.lazyLabel("FRET","Count","",frameon=True)
plt.subplot(NumHists,2,12)
ax = plt.gca()
plt.setp(ax.get_xticklabels(),visible=True)
pPlotUtil.lazyLabel("FRET","","",frameon=True)
pPlotUtil.savefig(fig,"./out.png")
示例15: TomPlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import savefig [as 别名]
def TomPlot(LandscapeObj,OutBase,UnfoldObj,RefoldObj,idx,f_one_half_N=0e-12):
# get a forward and reverse
ToX = lambda x: x * 1e9
ToForceY = lambda y: y * 1e12
fig = PlotUtilities.figure(figsize=(8,4))
plt.subplot(1,2,1)
SubplotArgs = dict(alpha=0.4,linewidth=0.5)
FilterN = 500
Unfold = FEC_Util.GetFilteredForce(UnfoldObj[idx],FilterN)
Refold = FEC_Util.GetFilteredForce(RefoldObj[idx],FilterN)
UnfoldX = ToX(Unfold.Extension)
UnfoldY = ToForceY(Unfold.Force)
FoldX = ToX(Refold.Extension)
FoldY = ToForceY(Refold.Force)
plt.plot(UnfoldX,UnfoldY,color='r',label="Unfolding",
**SubplotArgs)
plt.plot(FoldX,FoldY,color='b',label="Refolding",
**SubplotArgs)
fontdict = dict(fontsize=13)
x_text_dict = dict(x=60, y=22.5, s="2 nm", fontdict=fontdict,
withdash=False,
rotation="horizontal")
y_text_dict = dict(x=59, y=27, s="5 pN", fontdict=fontdict, withdash=False,
rotation="vertical")
PlotUtilities.ScaleBar(x_kwargs=dict(x=[60,62],y=[24,24]),
y_kwargs=dict(x=[60,60],y=[25,30]),
text_x=x_text_dict,text_y=y_text_dict)
PlotUtilities.legend(loc=[0.4,0.8],**fontdict)
plt.subplot(1,2,2)
Obj = IWT_Util.TiltedLandscape(LandscapeObj,f_one_half_N=f_one_half_N)
plt.plot(Obj.landscape_ext_nm,Obj.OffsetTilted_kT)
plt.xlim([56,69])
plt.ylim([-1,4])
yoffset = 1
x_text_dict = dict(x=58.5, y=yoffset+1.5, s="2 nm", fontdict=fontdict,
withdash=False,rotation="horizontal")
y_text_dict = dict(x=57, y=yoffset+2.5, s=r"1 k$_\mathrm{b}$T",
fontdict=fontdict, withdash=False,
rotation="vertical")
PlotUtilities.ScaleBar(x_kwargs=dict(x=[58,60],
y=[yoffset+1.75,yoffset+1.75]),
y_kwargs=dict(x=[58,58],y=[yoffset+2,yoffset+3]),
text_x=x_text_dict,text_y=y_text_dict,
kill_axis=True)
PlotUtilities.savefig(fig,OutBase + "TomMockup" + str(idx) + ".png",
subplots_adjust=dict(bottom=-0.1))
# save out the data exactly as we want to plot it
common = dict(delimiter=",")
ext = str(idx) + ".txt"
np.savetxt(X=np.c_[UnfoldX,UnfoldY],fname=OutBase+"Unfold" + ext,**common)
np.savetxt(X=np.c_[FoldX,FoldY],fname=OutBase+"Fold"+ext,**common)
np.savetxt(X=np.c_[Obj.landscape_ext_nm,Obj.OffsetTilted_kT],
fname=OutBase+"Landscape"+ext,**common)