本文整理汇总了Python中GeneralUtil.python.PlotUtilities.figure方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.figure方法的具体用法?Python PlotUtilities.figure怎么用?Python PlotUtilities.figure使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类GeneralUtil.python.PlotUtilities
的用法示例。
在下文中一共展示了PlotUtilities.figure方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。
示例1: InTheWeedsPlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def InTheWeedsPlot(OutBase,UnfoldObj,RefoldObj=[],Example=None,
Bins=[50,75,100,150,200,500,1000],**kwargs):
"""
Plots a detailed energy landscape, and saves
Args:
OutBase: where to start the save
UnfoldObj: unfolding objects
RefoldObj: refolding objects
Bins: how many bins to use in the energy landscape plots
<min/max>_landscape_kT: bounds on the landscape
Returns:
nothing
"""
# get the IWT
kT = 4.1e-21
for b in Bins:
LandscapeObj = InverseWeierstrass.\
FreeEnergyAtZeroForce(UnfoldObj,NumBins=b,RefoldingObjs=RefoldObj)
# make a 2-D histogram of everything
if (Example is not None):
fig = PlotUtilities.figure(figsize=(8,8))
ext_nm = Example.Separation*1e9
IWT_Util.ForceExtensionHistograms(ext_nm,
Example.Force*1e12,
AddAverage=False,
nBins=b)
PlotUtilities.savefig(fig,OutBase + "0_{:d}hist.pdf".format(b))
# get the distance to the transition state etc
print("DeltaG_Dagger is {:.1f}kT".format(Obj.DeltaGDagger))
fig = PlotUtilities.figure(figsize=(12,12))
plot_single_landscape(LandscapeObj,add_meta_half=True,
add_meta_free=True,**kwargs)
PlotUtilities.savefig(fig,OutBase + "1_{:d}IWT.pdf".format(b))
示例2: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run():
BaseDir = "/Volumes/group/4Patrick/Reports/" + \
"2016_6_5_NearEquilibrium_Biotin_DOPC/IWT/"
InBase = BaseDir + "In/"
OutBase = BaseDir + "Out/"
FullNames = [
InBase +"2016-6-3-micah-1-part-per-million-biolevel-long-strept-coated.pxp",
InBase +"2016-6-4-micah-1ppm-biolever-long-strept-saved-data.pxp",
InBase +"2016-6-5-micah-1ppm-biolever-long-strept-saved-data.pxp"
]
Limit = 100
ForceReRead = False
ForceRePlot = False
IwtObjects,RetractList,Touchoff,LandscapeObj = \
CheckpointUtilities.getCheckpoint(OutBase + "IWT.pkl",
IWT_Util.GetObjectsAndIWT,
ForceReRead,InBase,FullNames,
ForceReRead,
Limit=Limit)
ext,force = CheckpointUtilities.\
getCheckpoint(OutBase + "ExtAndForce.pkl",
IWT_Util.GetAllExtensionsAndForceAndPlot,
ForceRePlot,RetractList,
Touchoff,IwtObjects,OutBase)
fig = PlotUtilities.figure(figsize=(8,12))
IWT_Util.ForceExtensionHistograms(force,ext)
PlotUtilities.savefig(fig,OutBase + "HeatMap.png")
fig = PlotUtilities.figure(figsize=(8,12))
IWT_Util.EnergyLandscapePlot(LandscapeObj)
PlotUtilities.savefig(fig,OutBase + "IWT.png")
示例3: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run(base="./"):
"""
"""
out_base = base
data_base = base + "data/"
data_file = "../FigurePerformance_CS/data/Scores.pkl"
force=False
cache_file = base + "cache.pkl"
fec_file = data_base + "multiple.csv.pkl"
name = "FEATHER"
final_out_hist = "{:s}{:s}_distances.pdf".format(out_base,
name.replace(" ","_"))
l = CheckpointUtilities.getCheckpoint(cache_file,get_feather_run,force,
data_file)
# make the distance histogram figure for the presenation
fig = PlotUtilities.figure((10,5))
make_distance_figure(l,data_file,fec_file)
PlotUtilities.legend(loc='upper right')
PlotUtilities.savefig(fig,final_out_hist.replace(".pdf","_pres.pdf"))
# make the distance histogram figure
fig = PlotUtilities.figure((16,6))
make_distance_figure(l,data_file,fec_file)
PlotUtilities.legend(loc='upper right')
PlotUtilities.label_tom(fig,loc=(-0.1,1.0),fontsize=18)
PlotUtilities.savefig(fig,final_out_hist)
示例4: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run(base="./"):
"""
"""
name = "examples.pdf"
data_base = base + "data/"
file_names = ["protein","fast_unfolding","low-snr","ringing"]
kw = dict(cache_directory=data_base,force=False)
file_paths = [data_base + f +".csv" for f in file_names]
cases = [read_and_cache_file(f,**kw) for f in file_paths]
for c in cases:
split_fec = Analysis.zero_and_split_force_extension_curve(c)
name = c.Meta.Name
num = 0
retract_idx = split_fec.get_predicted_retract_surface_index()
split_fec.retract.Force -= \
np.percentile(split_fec.retract.Force[retract_idx:],25)
predicted_event_idx = Detector.predict(c,threshold=1e-2)
fig = PlotUtilities.figure((8,4))
plot_retract_with_events(split_fec)
num = label_and_save(fig=fig,name=name,num=num)
fig = PlotUtilities.figure((8,4))
plot_events_by_colors(split_fec,predicted_event_idx)
num = label_and_save(fig=fig,name=name,num=num)
fig = PlotUtilities.figure((6,10))
plt.subplot(2,1,1)
plot_events_by_colors(split_fec,predicted_event_idx,plot_filtered=True)
PlotUtilities.lazyLabel("","Force (pN)","")
PlotUtilities.no_x_label()
plt.subplot(2,1,2)
plot_state_transition_diagram(split_fec,predicted_event_idx)
num = label_and_save(fig=fig,name=name,num=num,ylabel="State")
示例5: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run(base="./"):
"""
"""
name = "cartoon.pdf"
data_base = base + "data/"
file_names = ["no","single","multiple"]
# save without the labels for the presentation
subplots_adjust = dict(left=0.12,wspace=0.2,hspace=0.1)
fig = PlotUtilities.figure((8,4))
plot_fec_cartoon(base,data_base,file_names,
arrow_kwargs=dict(markersize=75))
PlotUtilities.savefig(fig,name.replace(".pdf","_pres.pdf"),
subplots_adjust=subplots_adjust)
# save with the labels for the presentation
fig = PlotUtilities.figure((16,8))
subplots_adjust = dict(left=0.08,wspace=0.2,hspace=0.1)
plot_fec_cartoon(base,data_base,file_names,
arrow_kwargs=dict(markersize=125))
n_subplots = 2
n_categories = len(file_names)
letters = string.uppercase[:n_categories]
letters = ([r"{:s}".format(s) for s in letters] + \
["" for _ in range(n_categories)])
bottom = (-0.25,1)
top = (-0.60,1)
loc = [top for i in range(n_categories)] + \
[bottom for i in range(n_categories)]
PlotUtilities.label_tom(fig,letters,loc=loc)
PlotUtilities.savefig(fig,name,subplots_adjust=subplots_adjust)
示例6: plot_individual_learner
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def plot_individual_learner(cache_directory,learner,rupture_kwargs=dict()):
"""
Plots the results for a single, individual learner
Args:
cache_directory: where to save the plots
learner: learning_curve instance to use
Returns:
nothing
"""
learner_name = learner.description
out_file_stem = cache_directory + "{:s}".format(learner_name)
# get the scoring objects by paramter by fold
train_scores = learner._scores_by_params(train=True)
valid_scores = learner._scores_by_params(train=False)
x_values = learner.param_values()
rupture_distribution_plot(learner,out_file_stem,
distance_histogram=rupture_kwargs)
fig = PlotUtilities.figure()
distance_distribution_plot(learner,to_true=True)
PlotUtilities.savefig(fig,out_file_stem + "histogram_to_true.png")
fig = PlotUtilities.figure()
distance_distribution_plot(learner,to_true=False)
PlotUtilities.savefig(fig,out_file_stem + "histogram_to_predicted.png")
fig = PlotUtilities.figure()
plot_num_events_off(x_values,train_scores,valid_scores)
PlotUtilities.savefig(fig,out_file_stem + "n_off.png")
fig = PlotUtilities.figure()
cross_validation_distance_metric(x_values,train_scores,valid_scores,
to_true=True)
PlotUtilities.savefig(fig,out_file_stem + "dist.png")
示例7: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
learners = Learners.get_learners()
positives_directory = InputOutput.get_positives_directory()
positive_categories = InputOutput.\
get_categories(positives_directory=positives_directory,
use_simulated=True)
curve_numbers = [1,2,5,10,30,50,100,150,200]
cache_data_dir = "../_1ReadDataToCache/cache/"
cache_dir = "./cache/"
GenUtilities.ensureDirExists(cache_dir)
force = False
times = CheckpointUtilities.getCheckpoint(cache_dir + "all_timer.pkl",
cache_all_learners,force,
learners,positive_categories,
curve_numbers,
cache_data_dir,cache_dir,force)
out_base = "./out/"
GenUtilities.ensureDirExists(out_base)
# sort the times by their loading rates
max_time = max([l.max_time_trial() for l in times])
min_time = min([l.min_time_trial() for l in times])
# plot the Theta(n) coefficient for each
fig = PlotUtilities.figure()
TimePlot.plot_learner_prediction_time_comparison(times)
PlotUtilities.legend(loc="lower right",frameon=True)
PlotUtilities.savefig(fig,out_base + "compare.png")
for learner_trials in times:
base_name = out_base + learner_trials.learner.description
# plot the timing veruses loading rate and number of points
fig = PlotUtilities.figure()
TimePlot.plot_learner_versus_loading_rate_and_number(learner_trials)
fudge_x_low = 10
fudge_x_high = 2
fudge_y = 1.5
plt.ylim([min_time/fudge_y,max_time*fudge_y])
plt.xlim([1/fudge_x_low,max(curve_numbers)*fudge_x_high])
plt.yscale('log')
plt.xscale('log')
PlotUtilities.legend(loc="upper left",frameon=True)
PlotUtilities.savefig(fig, base_name + "_all_trials.png")
# plot the slopes
fig = PlotUtilities.figure()
TimePlot.plot_learner_slope_versus_loading_rate(learner_trials)
PlotUtilities.legend(loc="lower right",frameon=True)
PlotUtilities.savefig(fig, base_name + "_slopes.png")
示例8: hairpin_plots
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def hairpin_plots(example,filter_fraction,out_path):
n_filter = int(np.ceil(example.Force.size * filter_fraction))
# make a plot vs time
fig = PlotUtilities.figure()
plt.subplot(2,1,1)
FEC_Plot.force_versus_time(example,NFilterPoints=n_filter)
plt.subplot(2,1,2)
FEC_Plot.z_sensor_vs_time(example,NFilterPoints=n_filter)
PlotUtilities.savefig(fig,out_path + "vs_time.png")
# make a force-extension plot
fig = PlotUtilities.figure()
FEC_Plot.FEC(example,NFilterPoints=n_filter)
PlotUtilities.savefig(fig,out_path + "vs_sep.png")
示例9: SavePlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def SavePlot(SortByZ,FullName,SaveName):
Objs = FEC_Util.ReadInData(FullName)
Tmp = Objs[0]
if (SortByZ):
ArgSort = np.argsort(Tmp.Zsnsr)
Tmp.Zsnsr = Tmp.Zsnsr[ArgSort]
Tmp.Force = Tmp.Force[ArgSort]
Offset = 150
else:
Offset = 0
# set up the y limits in pN
ylim = [Offset-20,Offset+25]
fig = pPlotUtil.figure()
plt.subplot(2,1,1)
FullPlot(Tmp)
pPlotUtil.lazyLabel("Stage position (nm)","Force (pN)","Flickering for FEC",
frameon=True)
# x limits for 'zoomed in'
plt.xlim([30,40])
plt.ylim(ylim)
plt.subplot(2,1,2)
FullPlot(Tmp)
pPlotUtil.lazyLabel("Stage position (nm)","Force (pN)","",frameon=True)
# x limits for 'zoomed in'
plt.xlim([36,36.5])
plt.ylim(ylim)
pPlotUtil.savefig(fig,SaveName)
示例10: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
network = FEC_Util.default_data_root()
base = network + "4Patrick/CuratedData/Lipids/DOPC/"+\
"NegativeControls/Representative_Gallery/"
_,raw_data = FEC_Util.read_and_cache_pxp(base,force=False)
processed = [FEC_Util.SplitAndProcess(r) for r in raw_data]
inches_per_plot = 4.5
n_rows,n_cols = FEC_Plot._n_rows_and_cols(processed)
fig_size = (n_cols*inches_per_plot,n_rows*inches_per_plot)
fig = PlotUtilities.figure(figsize=(fig_size))
ylim_pN = [-20,75]
xlim_nm = [-10,100]
FEC_Plot.gallery_fec(processed,xlim_nm,ylim_pN)
plt.suptitle("Negative Control Gallery",y=1.2,fontsize=25)
PlotUtilities.savefig(fig,base + "out.png",close=False)
PlotUtilities.savefig(fig,"./out.png")
示例11: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
in_dir = "./data/"
cache_dir = "./cache/"
out_dir = in_dir
GenUtilities.ensureDirExists(out_dir)
images = ImageUtil.cache_images_in_directory(pxp_dir=in_dir,
cache_dir=cache_dir)
# note: vmin/vmax are in nm (as is height)
vmin_nm = 0
vmax_nm = vmin_nm + 0.6
imshow_kwargs = dict(vmin=vmin_nm,vmax=vmax_nm,cmap = plt.cm.Greys_r)
for im in images:
src_file = im.SourceFilename()
# path to save the image out
full_out_path = "{:s}{:s}-{:s}.png".format(out_dir,src_file,im.Name())
fig = PlotUtilities.figure((3.5,4))
ax = plt.subplot(1,1,1)
im.height = ImageUtil.subtract_background(im,deg=3)
im = ImageUtil.make_image_plot(im,imshow_kwargs,pct=50)
ImageUtil.smart_colorbar(im=im,ax=ax,fig=fig)
PlotUtilities.savefig(fig,full_out_path,bbox_inches='tight')
示例12: sequence_plots
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def sequence_plots(out_base,*args,**kwargs):
break_points = [_break_after_interp,_break_after_first_zoom,_dont_break]
for i,break_point in enumerate(break_points):
fig = PlotUtilities.figure((8,9))
plot(*args,when_to_break=break_point,**kwargs)
PlotUtilities.savefig(fig,out_base + "{:d}.pdf".format(i),
subplots_adjust=dict(wspace=0.05))
示例13: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
data_file = "../_Data/Scores.pkl"
kw = dict(score_tx_func=get_only_nug2_ruptures)
runs = [ ["./cache.pkl",dict(),"performance"],
["./cache_nug2.pkl",kw,"performance_nug2"]]
PlotUtilities.tom_text_rendering()
for cache_name,keywords,plot_name in runs:
# get the metrics we care about
metrics = CheckpointUtilities.getCheckpoint(cache_name,
Offline.get_best_metrics,
False,data_file,
**keywords)
coeffs_compare = [m.coefficients() for m in metrics]
write_coeffs_file("./coeffs.txt",coeffs_compare)
# make the plot we want
fig = PlotUtilities.figure(figsize=(7,3))
make_metric_plot(metrics)
axis_func = lambda axes: [ax for i,ax in enumerate(axes) if i < 3]
loc_last_two = [-0.05,1.1]
locs = [ [-0.2,1.1], loc_last_two,loc_last_two]
PlotUtilities.label_tom(fig,axis_func=axis_func,loc=locs)
# save out the plot
subplots_adjust = dict(hspace=0.1,wspace=0.1,
bottom=0.125,top=0.93)
PlotUtilities.save_png_and_svg(fig,plot_name,
subplots_adjust=subplots_adjust)
示例14: ScatterPlot
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def ScatterPlot(TransitionForces,ListOfSepAndFits,ExpectedContourLength,
OutDir):
"""
Makes a scatter plot of the contour length and transition forces
Args:
TransitionForces: array, each element the transition region for curve i
ListOfSepAndFits: array, each element the output of GetWLCFits
ExpectedContourLength: how long we expect the construct to be
OutDir: base directory, for saving stuff
"""
L0Arr = []
TxArr = []
for (SepNear,FitObj),TransitionFoces in zip(ListOfSepAndFits,
TransitionForces):
MedianTx = np.median(TransitionFoces)
L0,Lp,_,_ = FitObj.Params()
L0Arr.append(L0)
TxArr.append(MedianTx)
# go ahead an throw out ridiculous data from the WLC, where transition
# normalize the contour length to L0
L0Arr = np.array(L0Arr)/ExpectedContourLength
# convert to useful units
L0Plot = np.array(L0Arr)
TxPlot = np.array(TxArr) * 1e12
fig = pPlotUtil.figure(figsize=(12,12))
plt.subplot(2,2,1)
plt.plot(L0Plot,TxPlot,'go',label="Data")
alpha = 0.3
ColorForce = 'r'
ColorLength = 'b'
plt.axhspan(62,68,color=ColorForce,label=r"$F_{\rm tx}$ $\pm$ 5%",
alpha=alpha)
L0BoxMin = 0.9
L0BoxMax = 1.1
plt.axvspan(L0BoxMin,L0BoxMax,color=ColorLength,
label=r"L$_{\rm 0}$ $\pm$ 10%",alpha=alpha)
fudge = 1.05
# make the plot boundaries OK
MaxX = max(L0BoxMax,max(L0Plot))*fudge
MaxY = 90
plt.xlim([0,MaxX])
plt.ylim([0,MaxY])
pPlotUtil.lazyLabel("",r"F$_{\rm overstretch}$ (pN)",
"DNA Characterization Histograms ",frameon=True)
## now make 1-D histograms of everything
# subplot of histogram of transition force
HistOpts = dict(alpha=alpha,linewidth=0)
plt.subplot(2,2,2)
TransitionForceBins = np.linspace(0,MaxY)
plt.hist(TxPlot,bins=TransitionForceBins,orientation="horizontal",
color=ColorForce,**HistOpts)
pPlotUtil.lazyLabel("Count","","")
plt.ylim([0,MaxY])
plt.subplot(2,2,3)
ContourBins = np.linspace(0,MaxX)
plt.hist(L0Plot,bins=ContourBins,color=ColorLength,**HistOpts)
pPlotUtil.lazyLabel(r"$\frac{L_{\rm WLC}}{L_0}$","Count","")
plt.xlim([0,MaxX])
pPlotUtil.savefig(fig,"{:s}Out/ScatterL0vsFTx.png".format(OutDir))
示例15: run
# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import figure [as 别名]
def run():
"""
<Description>
Args:
param1: This is the first param.
Returns:
This is a description of what is returned.
"""
file_name = "defl.ibw"
defl_volts_wave = PxpLoader.read_ibw_as_wave(file_name)
defl_volts = defl_volts_wave.DataY
invols_nm_per_volt = 154.8
spring_pN_per_nM = 5.70
force_pN = defl_volts * invols_nm_per_volt * spring_pN_per_nM
# zero out to the maximum
force_pN -= np.mean(force_pN)
data_interval_in_s = 1/500e3
rate = 1/float(data_interval_in_s) # data rate in Hz
taus = np.logspace(-5,2,num=50,base=10) # tau-values in seconds
# fractional frequency data
(taus_used, adev, adeverror, adev_n) = \
allantools.adev(force_pN, data_type='freq', rate=rate, taus=taus)
fig = PlotUtilities.figure()
plt.errorbar(x=taus_used,y=adev,yerr=2*adeverror,label="95% C.I.")
plt.xscale('log')
plt.yscale('log')
plt.axhline(1,color='r',linestyle='--',label="1 pN")
PlotUtilities.lazyLabel("Averaging time (s)","Force (pN)","")
PlotUtilities.savefig(fig,"out.png")