当前位置: 首页>>代码示例>>Python>>正文


Python PlotUtilities.tickAxisFont方法代码示例

本文整理汇总了Python中GeneralUtil.python.PlotUtilities.tickAxisFont方法的典型用法代码示例。如果您正苦于以下问题:Python PlotUtilities.tickAxisFont方法的具体用法?Python PlotUtilities.tickAxisFont怎么用?Python PlotUtilities.tickAxisFont使用的例子?那么恭喜您, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在GeneralUtil.python.PlotUtilities的用法示例。


在下文中一共展示了PlotUtilities.tickAxisFont方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的Python代码示例。

示例1: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tickAxisFont [as 别名]
def run():
    """
    <Description>

    Args:
        param1: This is the first param.
    
    Returns:
        This is a description of what is returned.
    """
    n_samples = int(1e4)
    sigma = 1
    loc_arr = [-3,-1,0.5]
    n_bins = 50
    ylim = [0,0.6]
    n_cols = 3+1
    xlim = [-12,12]
    bins = np.linspace(*xlim,endpoint=True,num=n_bins)
    fig = PlotUtilities.figure((12,7))
    plt.subplot(1,n_cols,1)
    bhattacharya,x1,x2 = plot_bhattacharya(sigma,n_samples,bins=bins,
                                           loc=-9)
    plt.xlim(xlim)
    PlotUtilities.tickAxisFont()
    PlotUtilities.xlabel("Distribution Value")
    PlotUtilities.ylabel("Probability")
    PlotUtilities.legend(frameon=False)
    plt.ylim(ylim)
    title = p_label(bhattacharya,x1,x2)
    PlotUtilities.title(title)
    for i,loc in enumerate(loc_arr):
        plt.subplot(1,n_cols,(i+2))
        bhattacharya,x1,x2 = plot_bhattacharya(sigma,n_samples,bins,
                                               loc=loc)
        title = p_label(bhattacharya,x1,x2)
        PlotUtilities.title(title)
        plt.xlim(xlim)
        plt.ylim(ylim)
        PlotUtilities.tickAxisFont()
        PlotUtilities.no_y_label()
        PlotUtilities.legend(frameon=False)
        PlotUtilities.xlabel("")
    PlotUtilities.savefig(fig,"bcc.pdf",subplots_adjust=dict(wspace=0.1))
开发者ID:prheenan,项目名称:Research,代码行数:45,代码来源:main_bhattacharya.py

示例2: run

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tickAxisFont [as 别名]
def run(base="./"):
    """
    
    """
    out_base = base
    data_file = "../FigurePerformance_CS/data/Scores.pkl"
    force=False
    events_off = CheckpointUtilities.getCheckpoint("cache_dist.pkl",
                                                   dist_values,force,
                                                   data_file)
    max_with_error = 0
    min_with_error = np.inf
    # get the bounds
    for i,(args,x,name) in enumerate(events_off):
        max_with_error = max(max_with_error,max(args))
        min_with_error = min(min_with_error,min(args))
    ylim = [min_with_error/2,max_with_error*2]
    # plot everything
    fig = PlotUtilities.figure((16,8))
    n_cols = 3
    parameters = ["FEATHER probability","OpenFovea sensitivity",
                  "Scientific Python minimum SNR"]
    markers = Plotting.algorithm_markers()
    colors = Plotting.algorithm_colors()
    for i,(args,x,name) in enumerate(events_off):
        first = (i == 0)
        param = parameters[i]
        xlabel = "Tuning Parameter\n({:s})".format(param)
        ylabel = "" if not first else "BCC"
        plt.subplot(1,n_cols,(i+1))
        lazy_kwargs = dict(useLegend=first,
                           frameon=True)
        plt.loglog(x,args,marker=markers[i],linestyle='-',color=colors[i],
                   markersize=7)
        plot_name = Plotting.algorithm_title_dict()[name]
        title = "Tuning curve for {:s}".format(plot_name)
        PlotUtilities.lazyLabel(xlabel,ylabel,title,**lazy_kwargs)
        PlotUtilities.tickAxisFont()
        plt.ylim([min_with_error/2,max_with_error*2])
    loc = (-0.10,1.025)
    PlotUtilities.label_tom(fig,loc=loc)
    PlotUtilities.savefig(fig,out_base + "tuning.pdf")
开发者ID:prheenan,项目名称:Research,代码行数:44,代码来源:main_figure_tuning.py

示例3: plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tickAxisFont [as 别名]
def plot(interp,split_fec,f,xlim_rel_start,xlim_rel_delta,
         when_to_break=_dont_break):
    # calculate all the things we will neeed
    time_sep_force = f(split_fec)
    x_plot,y_plot = Plotting.plot_format(time_sep_force)
    n_filter_points = 1000
    x_raw = time_sep_force.Time
    y_raw = time_sep_force.Force
    interp_raw = interp(x_raw)
    diff_raw = y_raw - interp_raw
    stdev = Analysis.local_stdev(diff_raw,n=split_fec.tau_num_points)
    xlims_rel = [ [i,i+xlim_rel_delta] for i in  xlim_rel_start]
    # convert to plotting units
    n = x_plot.size
    slices_abs = [ slice(int(i*n),int(f*n),1) for i,f in xlims_rel ]
    x_plot_slices = [ x_plot[s] for s in slices_abs ]
    diff_raw_slices = [diff_raw[s] for s in slices_abs]
    max_raw_diff_slices = [max(d) for d in diff_raw_slices]
    min_raw_diff_slices = [min(d) for d in diff_raw_slices]
    range_raw_diff_slices = np.array([min(min_raw_diff_slices),
                                      max(max_raw_diff_slices)])
    range_raw_diff = np.array([min(diff_raw),max(diff_raw)])
    range_plot_diff = f_plot_y(range_raw_diff*1.1)
    xlim_abs = [ [min(x),max(x)] for x in x_plot_slices]
    n_plots = len(x_plot_slices)
    # set up the plot styling
    style_approach = dict(color='b')
    style_raw = dict(alpha=0.3,**style_approach)
    style_interp = dict(linewidth=3,**style_approach)
    colors = ['r','m','k']
    style_regions = [] 
    for c in colors:
        style_tmp = dict(**style_raw)
        style_tmp['color'] = c
        style_regions.append(style_tmp)
    gs = gridspec.GridSpec(3,2*n_plots)
    plt.subplot(gs[0,:])
    plot_force(x_plot,y_plot,interp_raw,style_raw,style_interp)
    # highlight all the residual regions in their colors
    for style_tmp,slice_tmp in zip(style_regions,slices_abs):
        if (when_to_break == _break_after_interp):
            break
        style_interp_tmp = dict(**style_tmp)
        style_interp_tmp['alpha'] = 1
        plt.plot(x_plot[slice_tmp],y_plot[slice_tmp],**style_tmp)
        plt.plot(x_plot[slice_tmp],f_plot_y(interp_raw[slice_tmp]),linewidth=3,
                 **style_interp_tmp)
        if (when_to_break == _break_after_first_zoom):
            break
    ax_diff = plt.subplot(gs[1,:])
    plot_residual(x_plot,diff_raw,style_raw)
    # highlight all the residual regions in their colors
    for style_tmp,slice_tmp in zip(style_regions,slices_abs):
        if (when_to_break == _break_after_interp):
            break
        plt.plot(x_plot[slice_tmp],f_plot_y(diff_raw)[slice_tmp],**style_tmp)
        if (when_to_break == _break_after_first_zoom):
            break
    plt.ylim(range_plot_diff)
    tick_kwargs = dict(right=False)
    # plot all the subregions
    for i in range(n_plots):
        xlim_tmp = xlim_abs[i]
        ylim_tmp = range_plot_diff
        """
        plot the raw data
        """
        offset_idx = 2*i
        ax_tmp = plt.subplot(gs[-1,offset_idx])
        diff_tmp = diff_raw_slices[i]
        # convert everything to plotting units
        diff_plot_tmp =f_plot_y(diff_tmp) 
        x_plot_tmp = x_plot_slices[i]
        style_tmp = style_regions[i]
        if (when_to_break != _break_after_interp):
            plt.plot(x_plot_tmp,diff_plot_tmp,**style_tmp)
        PlotUtilities.no_x_anything()
        if (i != 0):
            PlotUtilities.no_y_label()
            PlotUtilities.tickAxisFont(**tick_kwargs)
        else:
            PlotUtilities.lazyLabel("","Force (pN)","",tick_kwargs=tick_kwargs)
        plt.xlim(xlim_tmp)
        plt.ylim(ylim_tmp)
        if (when_to_break != _break_after_interp):
            PlotUtilities.zoom_effect01(ax_diff, ax_tmp, *xlim_tmp)
        if (i == 0 and (when_to_break != _break_after_interp)):
            # make a scale bar for this plot
            time = 20e-3
            string = "{:d} ms".format(int(time*1000))
            PlotUtilities.scale_bar_x(np.mean(xlim_tmp),0.8*max(ylim_tmp),
                                      s=string,width=time,fontsize=15)
        """
        plot the histogram
        """
        ax_hist = plt.subplot(gs[-1,offset_idx+1])
        if (i == 0):
            PlotUtilities.xlabel("Count")
        else:
            PlotUtilities.no_x_label()
#.........这里部分代码省略.........
开发者ID:prheenan,项目名称:Research,代码行数:103,代码来源:main_figure_noise.py

示例4: rupture_plot

# 需要导入模块: from GeneralUtil.python import PlotUtilities [as 别名]
# 或者: from GeneralUtil.python.PlotUtilities import tickAxisFont [as 别名]

#.........这里部分代码省略.........
        bins_rupture = _bins_rupture_plot
    if (bins_load is None):
        bins_load = _bins_load_plot
    if (lim_plot_load is None):
        lim_plot_load = _lim_load_plot
    if (lim_plot_force is None):
        lim_plot_force = _lim_force_plot
    if (distance_histogram is not None):
        ax_hist = plt.subplot(gs[:,0])
        histogram_event_distribution(**distance_histogram)
    ax0 = subplot_f(gs[0,offset])
    plot_true_and_predicted_ruptures(true,pred,**scatter_kwargs)
    PlotUtilities.xlabel("")
    plt.xlim(lim_plot_load)
    plt.ylim(lim_plot_force)
    PlotUtilities.title(title)
    if (remove_ticks):
        ax0.get_xaxis().set_ticklabels([])
    ax1 =subplot_f(gs[0,offset+1])
    hatch_true = true_hatch()
    true_style_histogram = _histogram_true_style(color_true=color_true,
                                                 label="true")
    pred_style_histogram = _histogram_predicted_style(color_pred=color_pred,
                                                     label="predicted")
    # for the rupture force, we dont add the label
    rupture_force_true_style = dict(**true_style_histogram)
    rupture_force_true_style['label'] = None
    rupture_force_pred_style = dict(**pred_style_histogram)
    rupture_force_pred_style['label'] = None
    rupture_force_histogram(pred,orientation='horizontal',bins=bins_rupture,
                            **rupture_force_pred_style)
    rupture_force_histogram(true,orientation='horizontal',bins=bins_rupture,
                            **rupture_force_true_style)
    PlotUtilities.lazyLabel("Count","","")
    ax = plt.gca()
    # push count to the top
    ax.xaxis.tick_top()
    ax.xaxis.set_label_position('top') 
    if (remove_ticks):
        ax1.get_yaxis().set_ticklabels([])
    if (count_limit is not None):
        plt.xlim(count_limit)
    plt.ylim(lim_plot_force)
    plt.xscale('log')
    ax4 = subplot_f(gs[1,offset])
    n_pred,_,_ = loading_rate_histogram(pred,orientation='vertical',
                                        bins=bins_load,
                                        **pred_style_histogram)
    n_true,_,_, = loading_rate_histogram(true,orientation='vertical',
                                         bins=bins_load,**true_style_histogram)
                                         
    if (count_limit is None and (len(n_pred) * len(n_true) > 0)):
        max_n = np.max([n_pred,n_true])
        count_limit = [0.5,max_n*10]
    else:
        count_limit = plt.ylim()
    PlotUtilities.lazyLabel("loading rate (pN/s)","Count","",frameon=False,
                            loc='upper left',useLegend=use_legend)
    plt.xscale('log')
    plt.yscale('log')
    plt.xlim(lim_plot_load)
    plt.ylim(count_limit)
    ax3 = subplot_f(gs[1,offset+1])
    if (len(loading_pred) > 0):
        coeffs = Analysis.\
            bc_coeffs_load_force_2d(loading_true,loading_pred,bins_load,
                                    ruptures_true,ruptures_pred,bins_rupture)
        # just get the 2d (last one
        coeffs = [1-coeffs[-1]]
    else:
        coeffs = [0]
    labels_coeffs = [r"BCC"]
    # add in the relative distance metrics, if the are here
    if (distance_histogram is not None):
        _,_,cat_relative_median,cat_relative_q,q = \
            Offline.relative_and_absolute_median_and_q(**distance_histogram)
        coeffs.append(cat_relative_q)
        q_fmt = str(int(q))
        labels_coeffs.append(r"P$_{" + q_fmt + "}$")
    coeffs = np.array(coeffs)
    # an infinite coefficient (or nan) is just one (worst possible)
    coeffs[np.where(~np.isfinite(coeffs))] = 1
    index = np.array([i for i in range(len(coeffs))])
    bar_width = 0.5
    rects1 = plt.bar(index, coeffs,alpha=0.3,color=color_pred)
    label_func = lambda i,r: "{:.3g}".format(r.get_height())
    y_func = lambda i,r: r.get_height()/2
    PlotUtilities.autolabel(rects1,label_func=label_func,y_func=y_func,
                            fontsize=PlotUtilities.g_font_legend,
                            fontweight='bold')
    plt.xticks(index, labels_coeffs,
               rotation=0,fontsize=PlotUtilities.g_font_label)
    PlotUtilities.ylabel("Metric")
    PlotUtilities.tickAxisFont()
    # push metric to the right
    ax = plt.gca()
    ax.yaxis.tick_right()
    ax.yaxis.set_label_position('right') 
    ax.tick_params(axis=u'x', which=u'both',length=0)
    plt.ylim([0,1])
开发者ID:prheenan,项目名称:Research,代码行数:104,代码来源:Plotting.py


注:本文中的GeneralUtil.python.PlotUtilities.tickAxisFont方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。